These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


888 related items for PubMed ID: 29898615

  • 1. Large eddy simulation in a rotary blood pump: Viscous shear stress computation and comparison with unsteady Reynolds-averaged Navier-Stokes simulation.
    Torner B, Konnigk L, Hallier S, Kumar J, Witte M, Wurm FH.
    Int J Artif Organs; 2018 Nov; 41(11):752-763. PubMed ID: 29898615
    [Abstract] [Full Text] [Related]

  • 2. Experimental and Numerical Investigation of an Axial Rotary Blood Pump.
    Schüle CY, Thamsen B, Blümel B, Lommel M, Karakaya T, Paschereit CO, Affeld K, Kertzscher U.
    Artif Organs; 2016 Nov; 40(11):E192-E202. PubMed ID: 27087467
    [Abstract] [Full Text] [Related]

  • 3. Influence of turbulent shear stresses on the numerical blood damage prediction in a ventricular assist device.
    Torner B, Konnigk L, Wurm FH.
    Int J Artif Organs; 2019 Dec; 42(12):735-747. PubMed ID: 31328604
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Numerical Analysis of Blood Damage Potential of the HeartMate II and HeartWare HVAD Rotary Blood Pumps.
    Thamsen B, Blümel B, Schaller J, Paschereit CO, Affeld K, Goubergrits L, Kertzscher U.
    Artif Organs; 2015 Aug; 39(8):651-9. PubMed ID: 26234447
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Crucial Aspects for Using Computational Fluid Dynamics as a Predictive Evaluation Tool for Blood Pumps.
    Gross-Hardt SH, Sonntag SJ, Boehning F, Steinseifer U, Schmitz-Rode T, Kaufmann TAS.
    ASAIO J; 2019 Aug; 65(8):864-873. PubMed ID: 31192838
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Large-Eddy Simulations of Flow in the FDA Benchmark Nozzle Geometry to Predict Hemolysis.
    Tobin N, Manning KB.
    Cardiovasc Eng Technol; 2020 Jun; 11(3):254-267. PubMed ID: 32297154
    [Abstract] [Full Text] [Related]

  • 15. Large Eddy Simulation and Reynolds-Averaged Navier-Stokes modeling of flow in a realistic pharyngeal airway model: an investigation of obstructive sleep apnea.
    Mihaescu M, Murugappan S, Kalra M, Khosla S, Gutmark E.
    J Biomech; 2008 Jul 19; 41(10):2279-88. PubMed ID: 18514205
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. A Numerical Simulation of HeartAssist5 Blood Pump Using an Advanced Turbulence Model.
    Drešar P, Rutten MCM, Gregorič ID, Duhovnik J.
    ASAIO J; 2018 Jul 19; 64(5):673-679. PubMed ID: 29076944
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Comparing turbulence models for flow through a rigid glottal model.
    Suh J, Frankel SH.
    J Acoust Soc Am; 2008 Mar 19; 123(3):1237-40. PubMed ID: 18345812
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 45.