These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


289 related items for PubMed ID: 29904767

  • 1. Controlled assembly of metal colloids on dye-doped silica particles to tune the photophysical properties of organic molecules.
    Zampini G, Tarpani L, Massaro G, Gambucci M, Peli E, Latterini L.
    Photochem Photobiol Sci; 2018 Aug 08; 17(8):995-1002. PubMed ID: 29904767
    [Abstract] [Full Text] [Related]

  • 2. Effect of metal nanoparticles on the photophysical behaviour of dye-silica conjugates.
    Tarpani L, Latterini L.
    Photochem Photobiol Sci; 2014 Jun 08; 13(6):884-90. PubMed ID: 24622877
    [Abstract] [Full Text] [Related]

  • 3. Distance and wavelength dependent quenching of molecular fluorescence by Au@SiO2 core-shell nanoparticles.
    Reineck P, Gómez D, Ng SH, Karg M, Bell T, Mulvaney P, Bach U.
    ACS Nano; 2013 Aug 27; 7(8):6636-48. PubMed ID: 23713513
    [Abstract] [Full Text] [Related]

  • 4. Protoporphyrin IX-Functionalized AgSiO2 Core-Shell Nanoparticles: Plasmonic Enhancement of Fluorescence and Singlet Oxygen Production.
    Lismont M, Dreesen L, Heinrichs B, Páez CA.
    Photochem Photobiol; 2016 Mar 27; 92(2):247-256. PubMed ID: 26668127
    [Abstract] [Full Text] [Related]

  • 5. Gold Nanoclusters: Bridging Gold Complexes and Plasmonic Nanoparticles in Photophysical Properties.
    Zhou M, Zeng C, Li Q, Higaki T, Jin R.
    Nanomaterials (Basel); 2019 Jun 28; 9(7):. PubMed ID: 31261666
    [Abstract] [Full Text] [Related]

  • 6. Metal-enhanced fluorescence platforms based on plasmonic ordered copper arrays: wavelength dependence of quenching and enhancement effects.
    Sugawa K, Tamura T, Tahara H, Yamaguchi D, Akiyama T, Otsuki J, Kusaka Y, Fukuda N, Ushijima H.
    ACS Nano; 2013 Nov 26; 7(11):9997-10010. PubMed ID: 24090528
    [Abstract] [Full Text] [Related]

  • 7. Distance and plasmon wavelength dependent fluorescence of molecules bound to silica-coated gold nanorods.
    Abadeer NS, Brennan MR, Wilson WL, Murphy CJ.
    ACS Nano; 2014 Aug 26; 8(8):8392-406. PubMed ID: 25062430
    [Abstract] [Full Text] [Related]

  • 8. Synthesis and characterization of model silica-gold core-shell nanohybrid systems to demonstrate plasmonic enhancement of fluorescence.
    Roy S, Dixit CK, Woolley R, O'Kennedy R, McDonagh C.
    Nanotechnology; 2012 Aug 17; 23(32):325603. PubMed ID: 22825430
    [Abstract] [Full Text] [Related]

  • 9. Carbon dot-DNA-protoporphyrin hybrid hydrogel for sustained photoinduced antimicrobial activity.
    Kumari S, Rajit Prasad S, Mandal D, Das P.
    J Colloid Interface Sci; 2019 Oct 01; 553():228-238. PubMed ID: 31212225
    [Abstract] [Full Text] [Related]

  • 10. Gold nanoparticle-enhanced and size-dependent generation of reactive oxygen species from protoporphyrin IX.
    Khaing Oo MK, Yang Y, Hu Y, Gomez M, Du H, Wang H.
    ACS Nano; 2012 Mar 27; 6(3):1939-47. PubMed ID: 22385214
    [Abstract] [Full Text] [Related]

  • 11. Plasmonic molecular nanohybrids-spectral dependence of fluorescence quenching.
    Olejnik M, Bujak Ł, Mackowski S.
    Int J Mol Sci; 2012 Mar 27; 13(1):1018-1028. PubMed ID: 22312301
    [Abstract] [Full Text] [Related]

  • 12. Metal-enhanced fluorescence from gold surfaces: angular dependent emission.
    Aslan K, Malyn SN, Geddes CD.
    J Fluoresc; 2007 Jan 27; 17(1):7-13. PubMed ID: 17160726
    [Abstract] [Full Text] [Related]

  • 13. Metal-enhanced fluorescence of dye-doped silica nano particles.
    Gunawardana KB, Green NS, Bumm LA, Halterman RL.
    J Fluoresc; 2015 Mar 27; 25(2):311-7. PubMed ID: 25627927
    [Abstract] [Full Text] [Related]

  • 14. Metal-enhanced fluorescent dye-doped silica nanoparticles and magnetic separation: A sensitive platform for one-step fluorescence detection of prostate specific antigen.
    Xu DD, Deng YL, Li CY, Lin Y, Tang HW.
    Biosens Bioelectron; 2017 Jan 15; 87():881-887. PubMed ID: 27662582
    [Abstract] [Full Text] [Related]

  • 15. Self-assembled plasmonic nanostructures.
    Klinkova A, Choueiri RM, Kumacheva E.
    Chem Soc Rev; 2014 Jun 07; 43(11):3976-91. PubMed ID: 24599020
    [Abstract] [Full Text] [Related]

  • 16. Hierarchical assembly of plasmonic nanostructures using virus capsid scaffolds on DNA origami templates.
    Wang D, Capehart SL, Pal S, Liu M, Zhang L, Schuck PJ, Liu Y, Yan H, Francis MB, De Yoreo JJ.
    ACS Nano; 2014 Aug 26; 8(8):7896-904. PubMed ID: 25020109
    [Abstract] [Full Text] [Related]

  • 17. Quenching and blinking of fluorescence of a single dye molecule bound to gold nanoparticles.
    Cannone F, Chirico G, Bizzarri AR, Cannistraro S.
    J Phys Chem B; 2006 Aug 24; 110(33):16491-8. PubMed ID: 16913781
    [Abstract] [Full Text] [Related]

  • 18. Wavelength-dependent emission enhancement through the design of active plasmonic nanoantennas.
    Ferrié M, Pinna N, Ravaine S, Vallée RA.
    Opt Express; 2011 Aug 29; 19(18):17697-712. PubMed ID: 21935138
    [Abstract] [Full Text] [Related]

  • 19. Plasmonic photothermal therapy (PPTT) using gold nanoparticles.
    Huang X, Jain PK, El-Sayed IH, El-Sayed MA.
    Lasers Med Sci; 2008 Jul 29; 23(3):217-28. PubMed ID: 17674122
    [Abstract] [Full Text] [Related]

  • 20. Understanding the mechanism of the energy transfer process from non-plasmonic fluorescence bimetallic nanoparticles to plasmonic gold nanoparticles.
    Akhuli A, Preeyanka N, Chakraborty D, Sarkar M.
    Phys Chem Chem Phys; 2023 Jul 05; 25(26):17470-17481. PubMed ID: 37357711
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.