These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
157 related items for PubMed ID: 29912830
1. Intracochlear Pressures in Simulated Otitis Media With Effusion: A Temporal Bone Study. Alhussaini MA, Banakis Hartl RM, Benichoux V, Tollin DJ, Jenkins HA, Greene NT. Otol Neurotol; 2018 Aug; 39(7):e585-e592. PubMed ID: 29912830 [Abstract] [Full Text] [Related]
2. Stapes displacement and intracochlear pressure in response to very high level, low frequency sounds. Greene NT, Jenkins HA, Tollin DJ, Easter JR. Hear Res; 2017 May; 348():16-30. PubMed ID: 28189837 [Abstract] [Full Text] [Related]
3. Conductive hearing loss induced by experimental middle-ear effusion in a chinchilla model reveals impaired tympanic membrane-coupled ossicular chain movement. Thornton JL, Chevallier KM, Koka K, Gabbard SA, Tollin DJ. J Assoc Res Otolaryngol; 2013 Aug; 14(4):451-64. PubMed ID: 23615802 [Abstract] [Full Text] [Related]
8. Restoration of middle-ear input in fluid-filled middle ears by controlled introduction of air or a novel air-filled implant. Ravicz ME, Chien WW, Rosowski JJ. Hear Res; 2015 Oct; 328():8-23. PubMed ID: 26121946 [Abstract] [Full Text] [Related]
9. The impact of round window reinforcement on middle and inner ear mechanics with air and bone conduction stimulation. Geerardyn A, Wils I, Putzeys T, Fierens G, Wouters J, Verhaert N. Hear Res; 2024 Sep 01; 450():109049. PubMed ID: 38850830 [Abstract] [Full Text] [Related]
10. Sheep as a large animal ear model: Middle-ear ossicular velocities and intracochlear sound pressure. Péus D, Dobrev I, Prochazka L, Thoele K, Dalbert A, Boss A, Newcomb N, Probst R, Röösli C, Sim JH, Huber A, Pfiffner F. Hear Res; 2017 Aug 01; 351():88-97. PubMed ID: 28601531 [Abstract] [Full Text] [Related]
13. Frequency dependence and harmonic distortion of stapes displacement and intracochlear pressure in response to very high level sounds. Greene NT, Argo TF, Easter J, Walilko T, Tollin DJ. Hear Res; 2024 Nov 01; 453():109121. PubMed ID: 39332208 [Abstract] [Full Text] [Related]
17. Differential intracochlear sound pressure measurements in normal human temporal bones. Nakajima HH, Dong W, Olson ES, Merchant SN, Ravicz ME, Rosowski JJ. J Assoc Res Otolaryngol; 2009 Mar 01; 10(1):23-36. PubMed ID: 19067078 [Abstract] [Full Text] [Related]
18. Impedances of the inner and middle ear estimated from intracochlear sound pressures in normal human temporal bones. Frear DL, Guan X, Stieger C, Rosowski JJ, Nakajima HH. Hear Res; 2018 Sep 01; 367():17-31. PubMed ID: 30015103 [Abstract] [Full Text] [Related]
19. Intracochlear pressure in response to high intensity, low frequency sounds in chinchilla. Peacock J, Al Hussaini M, Greene NT, Tollin DJ. Hear Res; 2018 Sep 01; 367():213-222. PubMed ID: 29945804 [Abstract] [Full Text] [Related]
20. The Audiometric and Mechanical Effects of Partial Ossicular Discontinuity. Farahmand RB, Merchant GR, Lookabaugh SA, Röösli C, Ulku CH, McKenna MJ, de Venecia RK, Halpin CF, Rosowski JJ, Nakajima HH. Ear Hear; 2016 Sep 01; 37(2):206-15. PubMed ID: 26510125 [Abstract] [Full Text] [Related] Page: [Next] [New Search]