These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
471 related items for PubMed ID: 29912971
1. Reconstitution and functional studies of hamster P-glycoprotein in giant liposomes. Park S, Majd S. PLoS One; 2018; 13(6):e0199279. PubMed ID: 29912971 [Abstract] [Full Text] [Related]
2. Hydrogel-assisted functional reconstitution of human P-glycoprotein (ABCB1) in giant liposomes. Horger KS, Liu H, Rao DK, Shukla S, Sept D, Ambudkar SV, Mayer M. Biochim Biophys Acta; 2015 Feb; 1848(2):643-53. PubMed ID: 25450342 [Abstract] [Full Text] [Related]
3. Purification and reconstitution of human P-glycoprotein. Ambudkar SV, Lelong IH, Zhang J, Cardarelli C. Methods Enzymol; 1998 Feb; 292():492-504. PubMed ID: 9711577 [Abstract] [Full Text] [Related]
4. Functional reconstitution of drug transport and ATPase activity in proteoliposomes containing partially purified P-glycoprotein. Sharom FJ, Yu X, Doige CA. J Biol Chem; 1993 Nov 15; 268(32):24197-202. PubMed ID: 7901214 [Abstract] [Full Text] [Related]
5. Functional characterization of a glycine 185-to-valine substitution in human P-glycoprotein by using a vaccinia-based transient expression system. Ramachandra M, Ambudkar SV, Gottesman MM, Pastan I, Hrycyna CA. Mol Biol Cell; 1996 Oct 15; 7(10):1485-98. PubMed ID: 8898356 [Abstract] [Full Text] [Related]
6. Transition state analysis of the coupling of drug transport to ATP hydrolysis by P-glycoprotein. Al-Shawi MK, Polar MK, Omote H, Figler RA. J Biol Chem; 2003 Dec 26; 278(52):52629-40. PubMed ID: 14551217 [Abstract] [Full Text] [Related]
7. Determining P-glycoprotein-drug interactions: evaluation of reconstituted P-glycoprotein in a liposomal system and LLC-MDR1 polarized cell monolayers. Melchior DL, Sharom FJ, Evers R, Wright GE, Chu JW, Wright SE, Chu X, Yabut J. J Pharmacol Toxicol Methods; 2012 Mar 26; 65(2):64-74. PubMed ID: 22394995 [Abstract] [Full Text] [Related]
8. The role of passive transbilayer drug movement in multidrug resistance and its modulation. Eytan GD, Regev R, Oren G, Assaraf YG. J Biol Chem; 1996 May 31; 271(22):12897-902. PubMed ID: 8662680 [Abstract] [Full Text] [Related]
9. Efficiency of P-glycoprotein-mediated exclusion of rhodamine dyes from multidrug-resistant cells is determined by their passive transmembrane movement rate. Eytan GD, Regev R, Oren G, Hurwitz CD, Assaraf YG. Eur J Biochem; 1997 Aug 15; 248(1):104-12. PubMed ID: 9310367 [Abstract] [Full Text] [Related]
10. Phospholipid flippase activity of the reconstituted P-glycoprotein multidrug transporter. Romsicki Y, Sharom FJ. Biochemistry; 2001 Jun 12; 40(23):6937-47. PubMed ID: 11389609 [Abstract] [Full Text] [Related]
11. Cooperativity between verapamil and ATP bound to the efflux transporter P-glycoprotein. Ledwitch KV, Gibbs ME, Barnes RW, Roberts AG. Biochem Pharmacol; 2016 Oct 15; 118():96-108. PubMed ID: 27531061 [Abstract] [Full Text] [Related]
12. Shedding light on drug transport: structure and function of the P-glycoprotein multidrug transporter (ABCB1). Sharom FJ. Biochem Cell Biol; 2006 Dec 15; 84(6):979-92. PubMed ID: 17215884 [Abstract] [Full Text] [Related]
13. Characterization of the ATPase activity of P-glycoprotein from multidrug-resistant Chinese hamster ovary cells. Sharom FJ, Yu X, Chu JW, Doige CA. Biochem J; 1995 Jun 01; 308 ( Pt 2)(Pt 2):381-90. PubMed ID: 7772017 [Abstract] [Full Text] [Related]
14. Membrane fluidization by ether, other anesthetics, and certain agents abolishes P-glycoprotein ATPase activity and modulates efflux from multidrug-resistant cells. Regev R, Assaraf YG, Eytan GD. Eur J Biochem; 1999 Jan 01; 259(1-2):18-24. PubMed ID: 9914470 [Abstract] [Full Text] [Related]
15. Interaction of the P-glycoprotein multidrug transporter (MDR1) with high affinity peptide chemosensitizers in isolated membranes, reconstituted systems, and intact cells. Sharom FJ, Yu X, Lu P, Liu R, Chu JW, Szabó K, Müller M, Hose CD, Monks A, Váradi A, Seprôdi J, Sarkadi B. Biochem Pharmacol; 1999 Aug 15; 58(4):571-86. PubMed ID: 10413294 [Abstract] [Full Text] [Related]
16. Drug transport by reconstituted P-glycoprotein in proteoliposomes. Effect of substrates and modulators, and dependence on bilayer phase state. Lu P, Liu R, Sharom FJ. Eur J Biochem; 2001 Mar 15; 268(6):1687-97. PubMed ID: 11248688 [Abstract] [Full Text] [Related]
17. The importance of cholesterol in maintenance of P-glycoprotein activity and its membrane perturbing influence. Rothnie A, Theron D, Soceneantu L, Martin C, Traikia M, Berridge G, Higgins CF, Devaux PF, Callaghan R. Eur Biophys J; 2001 Oct 15; 30(6):430-42. PubMed ID: 11718296 [Abstract] [Full Text] [Related]
18. Functional reconstitution of P-glycoprotein reveals an apparent near stoichiometric drug transport to ATP hydrolysis. Eytan GD, Regev R, Assaraf YG. J Biol Chem; 1996 Feb 09; 271(6):3172-8. PubMed ID: 8621717 [Abstract] [Full Text] [Related]
19. P-glycoprotein-mediated colchicine resistance in different cell lines correlates with the effects of colchicine on P-glycoprotein conformation. Druley TE, Stein WD, Ruth A, Roninson IB. Biochemistry; 2001 Apr 10; 40(14):4323-31. PubMed ID: 11284688 [Abstract] [Full Text] [Related]
20. Transport of polypeptide ionophores into proteoliposomes reconstituted with rat liver P-glycoprotein. Eytan GD, Borgnia MJ, Regev R, Assaraf YG. J Biol Chem; 1994 Oct 21; 269(42):26058-65. PubMed ID: 7523400 [Abstract] [Full Text] [Related] Page: [Next] [New Search]