These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


209 related items for PubMed ID: 29923393

  • 1. Elucidating the Elementary Reaction Pathways and Kinetics of Hydroxyl Radical-Induced Acetone Degradation in Aqueous Phase Advanced Oxidation Processes.
    Kamath D, Mezyk SP, Minakata D.
    Environ Sci Technol; 2018 Jul 17; 52(14):7763-7774. PubMed ID: 29923393
    [Abstract] [Full Text] [Related]

  • 2. Development of an Elementary Reaction-Based Kinetic Model to Predict the Aqueous-Phase Fate of Organic Compounds Induced by Reactive Free Radicals.
    Minakata D.
    Acc Chem Res; 2024 Jun 18; 57(12):1658-1669. PubMed ID: 38804206
    [Abstract] [Full Text] [Related]

  • 3. Development of linear free energy relationships for aqueous phase radical-involved chemical reactions.
    Minakata D, Mezyk SP, Jones JW, Daws BR, Crittenden JC.
    Environ Sci Technol; 2014 Dec 02; 48(23):13925-32. PubMed ID: 25368975
    [Abstract] [Full Text] [Related]

  • 4. Mechanistic Insight into the Degradation of Nitrosamines via Aqueous-Phase UV Photolysis or a UV-Based Advanced Oxidation Process: Quantum Mechanical Calculations.
    Minakata D, Coscarelli E.
    Molecules; 2018 Feb 28; 23(3):. PubMed ID: 29495565
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Mechanistic Insight into the Reactivity of Chlorine-Derived Radicals in the Aqueous-Phase UV-Chlorine Advanced Oxidation Process: Quantum Mechanical Calculations.
    Minakata D, Kamath D, Maetzold S.
    Environ Sci Technol; 2017 Jun 20; 51(12):6918-6926. PubMed ID: 28541663
    [Abstract] [Full Text] [Related]

  • 7. Computer-based first-principles kinetic modeling of degradation pathways and byproduct fates in aqueous-phase advanced oxidation processes.
    Guo X, Minakata D, Niu J, Crittenden J.
    Environ Sci Technol; 2014 May 20; 48(10):5718-25. PubMed ID: 24749836
    [Abstract] [Full Text] [Related]

  • 8. Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs).
    Yang Y, Pignatello JJ, Ma J, Mitch WA.
    Environ Sci Technol; 2014 Feb 18; 48(4):2344-51. PubMed ID: 24479380
    [Abstract] [Full Text] [Related]

  • 9. Role of hydroxyl radical during electrolytic degradation of contaminants.
    Li L, Goel RK.
    J Hazard Mater; 2010 Sep 15; 181(1-3):521-5. PubMed ID: 20580488
    [Abstract] [Full Text] [Related]

  • 10. Modeling the oxidation of phenolic compounds by hydrogen peroxide photolysis.
    Zhang T, Cheng L, Ma L, Meng F, Arnold RG, Sáez AE.
    Chemosphere; 2016 Oct 15; 161():349-357. PubMed ID: 27448315
    [Abstract] [Full Text] [Related]

  • 11. Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters.
    Grebel JE, Pignatello JJ, Mitch WA.
    Environ Sci Technol; 2010 Sep 01; 44(17):6822-8. PubMed ID: 20681567
    [Abstract] [Full Text] [Related]

  • 12. Development of a group contribution method to predict aqueous phase hydroxyl radical (HO*) reaction rate constants.
    Minakata D, Li K, Westerhoff P, Crittenden J.
    Environ Sci Technol; 2009 Aug 15; 43(16):6220-7. PubMed ID: 19746717
    [Abstract] [Full Text] [Related]

  • 13. Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions: experimental and theoretical studies.
    Minakata D, Song W, Crittenden J.
    Environ Sci Technol; 2011 Jul 15; 45(14):6057-65. PubMed ID: 21688853
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Kinetics and mechanisms of cylindrospermopsin destruction by sulfate radical-based advanced oxidation processes.
    He X, de la Cruz AA, O'Shea KE, Dionysiou DD.
    Water Res; 2014 Oct 15; 63():168-78. PubMed ID: 25000199
    [Abstract] [Full Text] [Related]

  • 16. Kinetics and pathways of ibuprofen degradation by the UV/chlorine advanced oxidation process.
    Xiang Y, Fang J, Shang C.
    Water Res; 2016 Mar 01; 90():301-308. PubMed ID: 26748208
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Hydroxyl radical scavenging by solid mineral surfaces in oxidative treatment systems: Rate constants and implications.
    Rusevova Crincoli K, Huling SG.
    Water Res; 2020 Feb 01; 169():115240. PubMed ID: 31706122
    [Abstract] [Full Text] [Related]

  • 19. Hydroxyl radical-mediated degradation of diclofenac revisited: a computational approach to assessment of reaction mechanisms and by-products.
    Agopcan Cinar S, Ziylan-Yavaş A, Catak S, Ince NH, Aviyente V.
    Environ Sci Pollut Res Int; 2017 Aug 01; 24(22):18458-18469. PubMed ID: 28643284
    [Abstract] [Full Text] [Related]

  • 20. Dimethylselenide as a probe for reactions of halogenated alkoxyl radicals in aqueous solution. Degradation of dichloro- and dibromomethane.
    Makogon O, Flyunt R, Tobien T, Naumov S, Bonifacić M.
    J Phys Chem A; 2008 Jul 03; 112(26):5908-16. PubMed ID: 18540662
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.