These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
129 related items for PubMed ID: 29924132
1. Screening and analysis on the differentially expression genes between diploid and autotetraploid watermelon by using of digital gene expression profile. Long YL, Qiao F, Jiang XF, Cong HQ, Sun ML, Xu ZJ. Braz J Biol; 2019; 79(2):180-190. PubMed ID: 29924132 [Abstract] [Full Text] [Related]
2. Transcriptome-based gene expression profiling of diploid radish (Raphanus sativus L.) and the corresponding autotetraploid. Cheng W, Tang M, Xie Y, Xu L, Wang Y, Luo X, Fan L, Liu L. Mol Biol Rep; 2019 Feb; 46(1):933-945. PubMed ID: 30560406 [Abstract] [Full Text] [Related]
3. Differential gene expression and alternative splicing between diploid and tetraploid watermelon. Saminathan T, Nimmakayala P, Manohar S, Malkaram S, Almeida A, Cantrell R, Tomason Y, Abburi L, Rahman MA, Vajja VG, Khachane A, Kumar B, Rajasimha HK, Levi A, Wehner T, Reddy UK. J Exp Bot; 2015 Mar; 66(5):1369-85. PubMed ID: 25520388 [Abstract] [Full Text] [Related]
7. Genome-wide identification and comparative analysis of grafting-responsive mRNA in watermelon grafted onto bottle gourd and squash rootstocks by high-throughput sequencing. Liu N, Yang J, Fu X, Zhang L, Tang K, Guy KM, Hu Z, Guo S, Xu Y, Zhang M. Mol Genet Genomics; 2016 Apr; 291(2):621-33. PubMed ID: 26500104 [Abstract] [Full Text] [Related]
8. Transcriptome analysis of the variations between autotetraploid Paulownia tomentosa and its diploid using high-throughput sequencing. Fan G, Wang L, Deng M, Niu S, Zhao Z, Xu E, Cao X, Zhang X. Mol Genet Genomics; 2015 Aug; 290(4):1627-38. PubMed ID: 25773315 [Abstract] [Full Text] [Related]
9. A comparative morphological and transcriptomic study on autotetraploid Stevia rebaudiana (bertoni) and its diploid. Xiang ZX, Tang XL, Liu WH, Song CN. Plant Physiol Biochem; 2019 Oct; 143():154-164. PubMed ID: 31505448 [Abstract] [Full Text] [Related]
10. Polyploidy Enhances F1 Pollen Sterility Loci Interactions That Increase Meiosis Abnormalities and Pollen Sterility in Autotetraploid Rice. Wu J, Shahid MQ, Chen L, Chen Z, Wang L, Liu X, Lu Y. Plant Physiol; 2015 Dec; 169(4):2700-17. PubMed ID: 26511913 [Abstract] [Full Text] [Related]
11. Transcriptome changes in reciprocal grafts involving watermelon and bottle gourd reveal molecular mechanisms involved in increase of the fruit size, rind toughness and soluble solids. Garcia-Lozano M, Dutta SK, Natarajan P, Tomason YR, Lopez C, Katam R, Levi A, Nimmakayala P, Reddy UK. Plant Mol Biol; 2020 Jan; 102(1-2):213-223. PubMed ID: 31845303 [Abstract] [Full Text] [Related]
12. Altered chromatin conformation and transcriptional regulation in watermelon following genome doubling. Garcia-Lozano M, Natarajan P, Levi A, Katam R, Lopez-Ortiz C, Nimmakayala P, Reddy UK. Plant J; 2021 May; 106(3):588-600. PubMed ID: 33788333 [Abstract] [Full Text] [Related]
13. Digital gene expression analysis of gene expression differences within Brassica diploids and allopolyploids. Jiang J, Wang Y, Zhu B, Fang T, Fang Y, Wang Y. BMC Plant Biol; 2015 Jan 27; 15():22. PubMed ID: 25623840 [Abstract] [Full Text] [Related]
14. A unique chromosome translocation disrupting ClWIP1 leads to gynoecy in watermelon. Zhang J, Guo S, Ji G, Zhao H, Sun H, Ren Y, Tian S, Li M, Gong G, Zhang H, Xu Y. Plant J; 2020 Jan 27; 101(2):265-277. PubMed ID: 31529543 [Abstract] [Full Text] [Related]
15. Transcriptome Profiling of Watermelon Root in Response to Short-Term Osmotic Stress. Yang Y, Mo Y, Yang X, Zhang H, Wang Y, Li H, Wei C, Zhang X. PLoS One; 2016 Jan 27; 11(11):e0166314. PubMed ID: 27861528 [Abstract] [Full Text] [Related]
16. Genome-wide identification and expression analysis of ClLAX, ClPIN and ClABCB genes families in Citrullus lanatus under various abiotic stresses and grafting. Yu C, Dong W, Zhan Y, Huang ZA, Li Z, Kim IS, Zhang C. BMC Genet; 2017 Apr 07; 18(1):33. PubMed ID: 28388893 [Abstract] [Full Text] [Related]
17. Comparative cytological and transcriptomic analysis of pollen development in autotetraploid and diploid rice. Wu J, Shahid MQ, Guo H, Yin W, Chen Z, Wang L, Liu X, Lu Y. Plant Reprod; 2014 Dec 07; 27(4):181-96. PubMed ID: 25262386 [Abstract] [Full Text] [Related]
18. Evaluating the Differential Response of Transcription Factors in Diploid versus Autotetraploid Rice Leaves Subjected to Diverse Saline-Alkali Stresses. Wang N, Wang Y, Wang C, Leng Z, Qi F, Wang S, Zhou Y, Meng W, Liu K, Zhang C, Ma J. Genes (Basel); 2023 May 25; 14(6):. PubMed ID: 37372331 [Abstract] [Full Text] [Related]
20. Transcriptome-Wide Analysis of Core Transcription Factors Associated with Defense Responses in Autotetraploid versus Diploid Rice under Saline Stress and Recovery. Wang Y, Meng W, Ye Y, Yu X, Chen H, Liu Y, Xu M, Wang N, Qi F, Lan Y, Xu Y, Ma J, Zhang C. Int J Mol Sci; 2023 Nov 05; 24(21):. PubMed ID: 37958969 [Abstract] [Full Text] [Related] Page: [Next] [New Search]