These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Chemically immobilized T4-bacteriophage for specific Escherichia coli detection using surface plasmon resonance. Arya SK, Singh A, Naidoo R, Wu P, McDermott MT, Evoy S. Analyst; 2011 Feb 07; 136(3):486-92. PubMed ID: 21079850 [Abstract] [Full Text] [Related]
5. The C-terminal portion of the tail fiber protein of bacteriophage lambda is responsible for binding to LamB, its receptor at the surface of Escherichia coli K-12. Wang J, Hofnung M, Charbit A. J Bacteriol; 2000 Jan 07; 182(2):508-12. PubMed ID: 10629200 [Abstract] [Full Text] [Related]
6. Phage probe on RAFT polymer surface for rapid enumeration of E. coli K12. Panhwar S, Çelikkan H, Evran E, Ekiz E, Ozkan Hukum K, Çetin D, Suludere Z, Hakki Boyaci I, Tamer U. Bioelectrochemistry; 2024 Dec 07; 160():108785. PubMed ID: 39094446 [Abstract] [Full Text] [Related]
8. Alteration of tail fiber protein gp38 enables T2 phage to infect Escherichia coli O157:H7. Yoichi M, Abe M, Miyanaga K, Unno H, Tanji Y. J Biotechnol; 2005 Jan 12; 115(1):101-7. PubMed ID: 15607229 [Abstract] [Full Text] [Related]
9. Nonlytic Recombinant Phage Tail Fiber Protein for Specific Recognition of Pseudomonas aeruginosa. He Y, Shi Y, Liu M, Wang Y, Wang L, Lu S, Fu Z. Anal Chem; 2018 Dec 18; 90(24):14462-14468. PubMed ID: 30481459 [Abstract] [Full Text] [Related]
11. Label-free electrochemiluminescent biosensor for rapid and sensitive detection of pseudomonas aeruginosa using phage as highly specific recognition agent. Yue H, He Y, Fan E, Wang L, Lu S, Fu Z. Biosens Bioelectron; 2017 Aug 15; 94():429-432. PubMed ID: 28334626 [Abstract] [Full Text] [Related]
12. Display of aggregation-prone ligand binding domain of human PPAR gamma on surface of bacteriophage lambda. Kong B, Ma WJ. Acta Pharmacol Sin; 2006 Jan 15; 27(1):91-9. PubMed ID: 16364215 [Abstract] [Full Text] [Related]
13. Low-fouling surface plasmon resonance biosensor for multi-step detection of foodborne bacterial pathogens in complex food samples. Vaisocherová-Lísalová H, Víšová I, Ermini ML, Špringer T, Song XC, Mrázek J, Lamačová J, Scott Lynn N, Šedivák P, Homola J. Biosens Bioelectron; 2016 Jun 15; 80():84-90. PubMed ID: 26807521 [Abstract] [Full Text] [Related]
14. Carbon nanotubes-based chemiresistive biosensors for detection of microorganisms. García-Aljaro C, Cella LN, Shirale DJ, Park M, Muñoz FJ, Yates MV, Mulchandani A. Biosens Bioelectron; 2010 Dec 15; 26(4):1437-41. PubMed ID: 20729063 [Abstract] [Full Text] [Related]
16. Advancing nanostructured porous si-based optical transducers for label free bacteria detection. Massad-Ivanir N, Shtenberg G, Segal E. Adv Exp Med Biol; 2012 Dec 15; 733():37-45. PubMed ID: 22101710 [Abstract] [Full Text] [Related]
17. Highly sensitive phage-based biosensor for the detection of beta-galactosidase. Nanduri V, Balasubramanian S, Sista S, Vodyanoy VJ, Simonian AL. Anal Chim Acta; 2007 Apr 25; 589(2):166-72. PubMed ID: 17418177 [Abstract] [Full Text] [Related]
18. Sensitive and selective analysis of a wide concentration range of IGFBP7 using a surface plasmon resonance biosensor. Jang DH, Choi Y, Choi YS, Kim SM, Kwak H, Shin SH, Hong S. Colloids Surf B Biointerfaces; 2014 Nov 01; 123():887-91. PubMed ID: 25466460 [Abstract] [Full Text] [Related]
19. A mixed self-assembled monolayer-based surface plasmon immunosensor for detection of E. coli O157:H7. Subramanian A, Irudayaraj J, Ryan T. Biosens Bioelectron; 2006 Jan 15; 21(7):998-1006. PubMed ID: 15878825 [Abstract] [Full Text] [Related]