These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


265 related items for PubMed ID: 29936127

  • 1. mTORC1 pathway in DNA damage response.
    Ma Y, Vassetzky Y, Dokudovskaya S.
    Biochim Biophys Acta Mol Cell Res; 2018 Sep; 1865(9):1293-1311. PubMed ID: 29936127
    [Abstract] [Full Text] [Related]

  • 2. RES-529: a PI3K/AKT/mTOR pathway inhibitor that dissociates the mTORC1 and mTORC2 complexes.
    Weinberg MA.
    Anticancer Drugs; 2016 Jul; 27(6):475-87. PubMed ID: 26918392
    [Abstract] [Full Text] [Related]

  • 3. Discrete signaling mechanisms of mTORC1 and mTORC2: Connected yet apart in cellular and molecular aspects.
    Jhanwar-Uniyal M, Amin AG, Cooper JB, Das K, Schmidt MH, Murali R.
    Adv Biol Regul; 2017 May; 64():39-48. PubMed ID: 28189457
    [Abstract] [Full Text] [Related]

  • 4. Targeting mTOR in Glioblastoma: Rationale and Preclinical/Clinical Evidence.
    Mecca C, Giambanco I, Donato R, Arcuri C.
    Dis Markers; 2018 May; 2018():9230479. PubMed ID: 30662577
    [Abstract] [Full Text] [Related]

  • 5. Therapeutic Targeting of DNA Damage Response in Cancer.
    Choi W, Lee ES.
    Int J Mol Sci; 2022 Feb 01; 23(3):. PubMed ID: 35163621
    [Abstract] [Full Text] [Related]

  • 6. Curcumin suppresses multiple DNA damage response pathways and has potency as a sensitizer to PARP inhibitor.
    Ogiwara H, Ui A, Shiotani B, Zou L, Yasui A, Kohno T.
    Carcinogenesis; 2013 Nov 01; 34(11):2486-97. PubMed ID: 23825154
    [Abstract] [Full Text] [Related]

  • 7. Mammalian target of rapamycin: discovery of rapamycin reveals a signaling pathway important for normal and cancer cell growth.
    Gibbons JJ, Abraham RT, Yu K.
    Semin Oncol; 2009 Dec 01; 36 Suppl 3():S3-S17. PubMed ID: 19963098
    [Abstract] [Full Text] [Related]

  • 8. mTORC1 and Nutrient Homeostasis: The Central Role of the Lysosome.
    Rabanal-Ruiz Y, Korolchuk VI.
    Int J Mol Sci; 2018 Mar 12; 19(3):. PubMed ID: 29534520
    [Abstract] [Full Text] [Related]

  • 9. Structures and Functions of the Human GATOR1 Complex.
    Ivanova I, Shen K.
    Subcell Biochem; 2024 Mar 12; 104():269-294. PubMed ID: 38963491
    [Abstract] [Full Text] [Related]

  • 10. Targeting Oxidatively Induced DNA Damage Response in Cancer: Opportunities for Novel Cancer Therapies.
    Davalli P, Marverti G, Lauriola A, D'Arca D.
    Oxid Med Cell Longev; 2018 Mar 12; 2018():2389523. PubMed ID: 29770165
    [Abstract] [Full Text] [Related]

  • 11. Crosstalk between the IGF-1R/AKT/mTORC1 pathway and the tumor suppressors p53 and p27 determines cisplatin sensitivity and limits the effectiveness of an IGF-1R pathway inhibitor.
    Davaadelger B, Duan L, Perez RE, Gitelis S, Maki CG.
    Oncotarget; 2016 May 10; 7(19):27511-26. PubMed ID: 27050276
    [Abstract] [Full Text] [Related]

  • 12. Understanding DNA damage response and DNA repair pathways: applications to more targeted cancer therapeutics.
    Kinsella TJ.
    Semin Oncol; 2009 Apr 10; 36(2 Suppl 1):S42-51. PubMed ID: 19393835
    [Abstract] [Full Text] [Related]

  • 13. Structure-activity relationship of leucyladenylate sulfamate analogues as leucyl-tRNA synthetase (LRS)-targeting inhibitors of Mammalian target of rapamycin complex 1 (mTORC1).
    Yoon S, Kim SE, Kim JH, Yoon I, Tran PT, Ann J, Kim C, Byun WS, Lee S, Kim S, Lee J, Lee J.
    Bioorg Med Chem; 2019 Mar 15; 27(6):1099-1109. PubMed ID: 30755350
    [Abstract] [Full Text] [Related]

  • 14. The New Antitumor Drug ABTL0812 Inhibits the Akt/mTORC1 Axis by Upregulating Tribbles-3 Pseudokinase.
    Erazo T, Lorente M, López-Plana A, Muñoz-Guardiola P, Fernández-Nogueira P, García-Martínez JA, Bragado P, Fuster G, Salazar M, Espadaler J, Hernández-Losa J, Bayascas JR, Cortal M, Vidal L, Gascón P, Gómez-Ferreria M, Alfón J, Velasco G, Domènech C, Lizcano JM.
    Clin Cancer Res; 2016 May 15; 22(10):2508-19. PubMed ID: 26671995
    [Abstract] [Full Text] [Related]

  • 15. MicroRNAs, DNA Damage Response, and Cancer Treatment.
    He M, Zhou W, Li C, Guo M.
    Int J Mol Sci; 2016 Dec 12; 17(12):. PubMed ID: 27973455
    [Abstract] [Full Text] [Related]

  • 16. mTORC1 signaling in hepatic lipid metabolism.
    Han J, Wang Y.
    Protein Cell; 2018 Feb 12; 9(2):145-151. PubMed ID: 28434145
    [Abstract] [Full Text] [Related]

  • 17. The Target of Rapamycin and Mechanisms of Cell Growth.
    Tee AR.
    Int J Mol Sci; 2018 Mar 16; 19(3):. PubMed ID: 29547541
    [Abstract] [Full Text] [Related]

  • 18. Ciclopirox olamine inhibits mTORC1 signaling by activation of AMPK.
    Zhou H, Shang C, Wang M, Shen T, Kong L, Yu C, Ye Z, Luo Y, Liu L, Li Y, Huang S.
    Biochem Pharmacol; 2016 Sep 15; 116():39-50. PubMed ID: 27396756
    [Abstract] [Full Text] [Related]

  • 19. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway.
    Polivka J, Janku F.
    Pharmacol Ther; 2014 May 15; 142(2):164-75. PubMed ID: 24333502
    [Abstract] [Full Text] [Related]

  • 20. Control of leucine-dependent mTORC1 pathway through chemical intervention of leucyl-tRNA synthetase and RagD interaction.
    Kim JH, Lee C, Lee M, Wang H, Kim K, Park SJ, Yoon I, Jang J, Zhao H, Kim HK, Kwon NH, Jeong SJ, Yoo HC, Kim JH, Yang JS, Lee MY, Lee CW, Yun J, Oh SJ, Kang JS, Martinis SA, Hwang KY, Guo M, Han G, Han JM, Kim S.
    Nat Commun; 2017 Sep 29; 8(1):732. PubMed ID: 28963468
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.