These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


208 related items for PubMed ID: 29950310

  • 21. Phosphorylation of Sic1p by G1 Cdk required for its degradation and entry into S phase.
    Verma R, Annan RS, Huddleston MJ, Carr SA, Reynard G, Deshaies RJ.
    Science; 1997 Oct 17; 278(5337):455-60. PubMed ID: 9334303
    [Abstract] [Full Text] [Related]

  • 22. The molecular chaperone Ydj1 is required for the p34CDC28-dependent phosphorylation of the cyclin Cln3 that signals its degradation.
    Yaglom JA, Goldberg AL, Finley D, Sherman MY.
    Mol Cell Biol; 1996 Jul 17; 16(7):3679-84. PubMed ID: 8668184
    [Abstract] [Full Text] [Related]

  • 23. Cell cycle control by a complex of the cyclin HCS26 (PCL1) and the kinase PHO85.
    Espinoza FH, Ogas J, Herskowitz I, Morgan DO.
    Science; 1994 Nov 25; 266(5189):1388-91. PubMed ID: 7973730
    [Abstract] [Full Text] [Related]

  • 24. The Cln3 cyclin is down-regulated by translational repression and degradation during the G1 arrest caused by nitrogen deprivation in budding yeast.
    Gallego C, Garí E, Colomina N, Herrero E, Aldea M.
    EMBO J; 1997 Dec 01; 16(23):7196-206. PubMed ID: 9384596
    [Abstract] [Full Text] [Related]

  • 25. Late-G1 cyclin-CDK activity is essential for control of cell morphogenesis in budding yeast.
    Moffat J, Andrews B.
    Nat Cell Biol; 2004 Jan 01; 6(1):59-66. PubMed ID: 14688790
    [Abstract] [Full Text] [Related]

  • 26. Rapid degradation of the G1 cyclin Cln2 induced by CDK-dependent phosphorylation.
    Lanker S, Valdivieso MH, Wittenberg C.
    Science; 1996 Mar 15; 271(5255):1597-601. PubMed ID: 8599119
    [Abstract] [Full Text] [Related]

  • 27. Yeast Cip1 is activated by environmental stress to inhibit Cdk1-G1 cyclins via Mcm1 and Msn2/4.
    Chang YL, Tseng SF, Huang YC, Shen ZJ, Hsu PH, Hsieh MH, Yang CW, Tognetti S, Canal B, Subirana L, Wang CW, Chen HT, Lin CY, Posas F, Teng SC.
    Nat Commun; 2017 Jul 04; 8(1):56. PubMed ID: 28676626
    [Abstract] [Full Text] [Related]

  • 28. Daughter-specific transcription factors regulate cell size control in budding yeast.
    Di Talia S, Wang H, Skotheim JM, Rosebrock AP, Futcher B, Cross FR.
    PLoS Biol; 2009 Oct 04; 7(10):e1000221. PubMed ID: 19841732
    [Abstract] [Full Text] [Related]

  • 29. Evidence for novel mechanisms that control cell-cycle entry and cell size.
    Brambila A, Prichard BE, DeWitt JT, Kellogg DR.
    Mol Biol Cell; 2024 Apr 01; 35(4):ar46. PubMed ID: 38231863
    [Abstract] [Full Text] [Related]

  • 30. Deviation of the typical AAA substrate-threading pore prevents fatal protein degradation in yeast Cdc48.
    Esaki M, Islam MT, Tani N, Ogura T.
    Sci Rep; 2017 Jul 14; 7(1):5475. PubMed ID: 28710470
    [Abstract] [Full Text] [Related]

  • 31. Regulation of B-type cyclin proteolysis by Cdc28-associated kinases in budding yeast.
    Amon A.
    EMBO J; 1997 May 15; 16(10):2693-702. PubMed ID: 9184216
    [Abstract] [Full Text] [Related]

  • 32. Acetyl-CoA induces transcription of the key G1 cyclin CLN3 to promote entry into the cell division cycle in Saccharomyces cerevisiae.
    Shi L, Tu BP.
    Proc Natl Acad Sci U S A; 2013 Apr 30; 110(18):7318-23. PubMed ID: 23589851
    [Abstract] [Full Text] [Related]

  • 33. G1 cyclin turnover and nutrient uptake are controlled by a common pathway in yeast.
    Barral Y, Jentsch S, Mann C.
    Genes Dev; 1995 Feb 15; 9(4):399-409. PubMed ID: 7883165
    [Abstract] [Full Text] [Related]

  • 34. Competition in the chaperone-client network subordinates cell-cycle entry to growth and stress.
    Moreno DF, Parisi E, Yahya G, Vaggi F, Csikász-Nagy A, Aldea M.
    Life Sci Alliance; 2019 Apr 15; 2(2):. PubMed ID: 30988162
    [Abstract] [Full Text] [Related]

  • 35. [The role of Cln3 in filamentous growth and invasive growth of Saccharomyces cerevisiae].
    Ni J, Liu XY, Chen JY.
    Shi Yan Sheng Wu Xue Bao; 2004 Apr 15; 37(2):145-50. PubMed ID: 15259988
    [Abstract] [Full Text] [Related]

  • 36. Cdc53 targets phosphorylated G1 cyclins for degradation by the ubiquitin proteolytic pathway.
    Willems AR, Lanker S, Patton EE, Craig KL, Nason TF, Mathias N, Kobayashi R, Wittenberg C, Tyers M.
    Cell; 1996 Aug 09; 86(3):453-63. PubMed ID: 8756727
    [Abstract] [Full Text] [Related]

  • 37. Cdc48p is required for the cell cycle commitment point at Start via degradation of the G1-CDK inhibitor Far1p.
    Fu X, Ng C, Feng D, Liang C.
    J Cell Biol; 2003 Oct 13; 163(1):21-6. PubMed ID: 14557244
    [Abstract] [Full Text] [Related]

  • 38. Regulation of the G1 phase of the cell cycle by periodic stabilization and degradation of the p25rum1 CDK inhibitor.
    Benito J, Martín-Castellanos C, Moreno S.
    EMBO J; 1998 Jan 15; 17(2):482-97. PubMed ID: 9430640
    [Abstract] [Full Text] [Related]

  • 39. Degradation of the Mitotic Cyclin Clb3 Is not Required for Mitotic Exit but Is Necessary for G1 Cyclin Control of the Succeeding Cell Cycle.
    Pecani K, Cross FR.
    Genetics; 2016 Dec 15; 204(4):1479-1494. PubMed ID: 27794027
    [Abstract] [Full Text] [Related]

  • 40. Whi3 binds the mRNA of the G1 cyclin CLN3 to modulate cell fate in budding yeast.
    Garí E, Volpe T, Wang H, Gallego C, Futcher B, Aldea M.
    Genes Dev; 2001 Nov 01; 15(21):2803-8. PubMed ID: 11691832
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.