These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


258 related items for PubMed ID: 29954180

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Mechanism of Radical Initiation in the Radical S-Adenosyl-l-methionine Superfamily.
    Broderick WE, Hoffman BM, Broderick JB.
    Acc Chem Res; 2018 Nov 20; 51(11):2611-2619. PubMed ID: 30346729
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Radical SAM Enzyme Spore Photoproduct Lyase: Properties of the Ω Organometallic Intermediate and Identification of Stable Protein Radicals Formed during Substrate-Free Turnover.
    Pagnier A, Yang H, Jodts RJ, James CD, Shepard EM, Impano S, Broderick WE, Hoffman BM, Broderick JB.
    J Am Chem Soc; 2020 Oct 28; 142(43):18652-18660. PubMed ID: 32966073
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Pyruvate formate-lyase activating enzyme: The catalytically active 5'-deoxyadenosyl radical caught in the act of H-atom abstraction.
    Lundahl MN, Yang H, Broderick WE, Hoffman BM, Broderick JB.
    Proc Natl Acad Sci U S A; 2023 Nov 21; 120(47):e2314696120. PubMed ID: 37956301
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Mechanism of Radical S-Adenosyl-l-methionine Adenosylation: Radical Intermediates and the Catalytic Competence of the 5'-Deoxyadenosyl Radical.
    Lundahl MN, Sarksian R, Yang H, Jodts RJ, Pagnier A, Smith DF, Mosquera MA, van der Donk WA, Hoffman BM, Broderick WE, Broderick JB.
    J Am Chem Soc; 2022 Mar 23; 144(11):5087-5098. PubMed ID: 35258967
    [Abstract] [Full Text] [Related]

  • 10. The Elusive 5'-Deoxyadenosyl Radical: Captured and Characterized by Electron Paramagnetic Resonance and Electron Nuclear Double Resonance Spectroscopies.
    Yang H, McDaniel EC, Impano S, Byer AS, Jodts RJ, Yokoyama K, Broderick WE, Broderick JB, Hoffman BM.
    J Am Chem Soc; 2019 Jul 31; 141(30):12139-12146. PubMed ID: 31274303
    [Abstract] [Full Text] [Related]

  • 11. Electron-nuclear double resonance spectroscopic evidence that S-adenosylmethionine binds in contact with the catalytically active [4Fe-4S](+) cluster of pyruvate formate-lyase activating enzyme.
    Walsby CJ, Hong W, Broderick WE, Cheek J, Ortillo D, Broderick JB, Hoffman BM.
    J Am Chem Soc; 2002 Mar 27; 124(12):3143-51. PubMed ID: 11902903
    [Abstract] [Full Text] [Related]

  • 12. Active-Site Controlled, Jahn-Teller Enabled Regioselectivity in Reductive S-C Bond Cleavage of S-Adenosylmethionine in Radical SAM Enzymes.
    Impano S, Yang H, Jodts RJ, Pagnier A, Swimley R, McDaniel EC, Shepard EM, Broderick WE, Broderick JB, Hoffman BM.
    J Am Chem Soc; 2021 Jan 13; 143(1):335-348. PubMed ID: 33372786
    [Abstract] [Full Text] [Related]

  • 13. Photoinduced Electron Transfer in a Radical SAM Enzyme Generates an S-Adenosylmethionine Derived Methyl Radical.
    Yang H, Impano S, Shepard EM, James CD, Broderick WE, Broderick JB, Hoffman BM.
    J Am Chem Soc; 2019 Oct 09; 141(40):16117-16124. PubMed ID: 31509404
    [Abstract] [Full Text] [Related]

  • 14. S-Adenosyl-l-ethionine is a Catalytically Competent Analog of S-Adenosyl-l-methione (SAM) in the Radical SAM Enzyme HydG.
    Impano S, Yang H, Shepard EM, Swimley R, Pagnier A, Broderick WE, Hoffman BM, Broderick JB.
    Angew Chem Int Ed Engl; 2021 Feb 23; 60(9):4666-4672. PubMed ID: 33935588
    [Abstract] [Full Text] [Related]

  • 15. Radical mechanisms of enzymatic catalysis.
    Frey PA.
    Annu Rev Biochem; 2001 Feb 23; 70():121-48. PubMed ID: 11395404
    [Abstract] [Full Text] [Related]

  • 16. Monovalent Cation Activation of the Radical SAM Enzyme Pyruvate Formate-Lyase Activating Enzyme.
    Shisler KA, Hutcheson RU, Horitani M, Duschene KS, Crain AV, Byer AS, Shepard EM, Rasmussen A, Yang J, Broderick WE, Vey JL, Drennan CL, Hoffman BM, Broderick JB.
    J Am Chem Soc; 2017 Aug 30; 139(34):11803-11813. PubMed ID: 28768413
    [Abstract] [Full Text] [Related]

  • 17. Why Nature Uses Radical SAM Enzymes so Widely: Electron Nuclear Double Resonance Studies of Lysine 2,3-Aminomutase Show the 5'-dAdo• "Free Radical" Is Never Free.
    Horitani M, Byer AS, Shisler KA, Chandra T, Broderick JB, Hoffman BM.
    J Am Chem Soc; 2015 Jun 10; 137(22):7111-21. PubMed ID: 25923449
    [Abstract] [Full Text] [Related]

  • 18. Characterization by ENDOR Spectroscopy of the Iron-Alkyl Bond in a Synthetic Counterpart of Organometallic Intermediates in Radical SAM Enzymes.
    Ho MB, Jodts RJ, Kim Y, McSkimming A, Suess DLM, Hoffman BM.
    J Am Chem Soc; 2022 Sep 28; 144(38):17642-17650. PubMed ID: 36108299
    [Abstract] [Full Text] [Related]

  • 19. Spectroscopic approaches to elucidating novel iron-sulfur chemistry in the "radical-Sam" protein superfamily.
    Walsby CJ, Ortillo D, Yang J, Nnyepi MR, Broderick WE, Hoffman BM, Broderick JB.
    Inorg Chem; 2005 Feb 21; 44(4):727-41. PubMed ID: 15859242
    [Abstract] [Full Text] [Related]

  • 20. Coordination of adenosylmethionine to a unique iron site of the [4Fe-4S] of pyruvate formate-lyase activating enzyme: a Mössbauer spectroscopic study.
    Krebs C, Broderick WE, Henshaw TF, Broderick JB, Huynh BH.
    J Am Chem Soc; 2002 Feb 13; 124(6):912-3. PubMed ID: 11829592
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.