These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


467 related items for PubMed ID: 29954330

  • 1. Transferring knowledge of bacterial protein interaction networks to predict pathogen targeted human genes and immune signaling pathways: a case study on M. tuberculosis.
    Mei S, Flemington EK, Zhang K.
    BMC Genomics; 2018 Jun 28; 19(1):505. PubMed ID: 29954330
    [Abstract] [Full Text] [Related]

  • 2. In Silico Enhancing M. tuberculosis Protein Interaction Networks in STRING To Predict Drug-Resistance Pathways and Pharmacological Risks.
    Mei S.
    J Proteome Res; 2018 May 04; 17(5):1749-1760. PubMed ID: 29611419
    [Abstract] [Full Text] [Related]

  • 3. Stringent DDI-based prediction of H. sapiens-M. tuberculosis H37Rv protein-protein interactions.
    Zhou H, Rezaei J, Hugo W, Gao S, Jin J, Fan M, Yong CH, Wozniak M, Wong L.
    BMC Syst Biol; 2013 May 04; 7 Suppl 6(Suppl 6):S6. PubMed ID: 24564941
    [Abstract] [Full Text] [Related]

  • 4. Stringent homology-based prediction of H. sapiens-M. tuberculosis H37Rv protein-protein interactions.
    Zhou H, Gao S, Nguyen NN, Fan M, Jin J, Liu B, Zhao L, Xiong G, Tan M, Li S, Wong L.
    Biol Direct; 2014 Apr 08; 9():5. PubMed ID: 24708540
    [Abstract] [Full Text] [Related]

  • 5. Characteristic genes in THP‑1 derived macrophages infected with Mycobacterium tuberculosis H37Rv strain identified by integrating bioinformatics methods.
    Zhang YW, Lin Y, Yu HY, Tian RN, Li F.
    Int J Mol Med; 2019 Oct 08; 44(4):1243-1254. PubMed ID: 31364746
    [Abstract] [Full Text] [Related]

  • 6. Comparative transcriptomic analysis of THP-1-derived macrophages infected with Mycobacterium tuberculosis H37Rv, H37Ra and BCG.
    Pu W, Zhao C, Wazir J, Su Z, Niu M, Song S, Wei L, Li L, Zhang X, Shi X, Wang H.
    J Cell Mol Med; 2021 Nov 08; 25(22):10504-10520. PubMed ID: 34632719
    [Abstract] [Full Text] [Related]

  • 7. Integrating Multifaceted Information to Predict Mycobacterium tuberculosis-Human Protein-Protein Interactions.
    Sun J, Yang LL, Chen X, Kong DX, Liu R.
    J Proteome Res; 2018 Nov 02; 17(11):3810-3823. PubMed ID: 30269499
    [Abstract] [Full Text] [Related]

  • 8. Understanding the role of interactions between host and Mycobacterium tuberculosis under hypoxic condition: an in silico approach.
    Bose T, Das C, Dutta A, Mahamkali V, Sadhu S, Mande SS.
    BMC Genomics; 2018 Jul 27; 19(1):555. PubMed ID: 30053801
    [Abstract] [Full Text] [Related]

  • 9. Genetic-and-Epigenetic Interspecies Networks for Cross-Talk Mechanisms in Human Macrophages and Dendritic Cells during MTB Infection.
    Li CW, Lee YL, Chen BS.
    Front Cell Infect Microbiol; 2016 Jul 27; 6():124. PubMed ID: 27803888
    [Abstract] [Full Text] [Related]

  • 10. Improved understanding of pathogenesis from protein interactions in Mycobacterium tuberculosis.
    Cui T, He ZG.
    Expert Rev Proteomics; 2014 Dec 27; 11(6):745-55. PubMed ID: 25327725
    [Abstract] [Full Text] [Related]

  • 11. Uncovering New Pathogen-Host Protein-Protein Interactions by Pairwise Structure Similarity.
    Cui T, Li W, Liu L, Huang Q, He ZG.
    PLoS One; 2016 Dec 27; 11(1):e0147612. PubMed ID: 26799490
    [Abstract] [Full Text] [Related]

  • 12. Cellular and Molecular Network Characteristics of TARM1-Related Genes in Mycobacterium tuberculosis Infections.
    Peng L, Wu H, Zhu L, Song J, Ma W, Zhong L, Ma W, Yang R, Huang X, Li B, Luo S, Bao F, Liu A.
    Int J Mol Sci; 2024 Sep 20; 25(18):. PubMed ID: 39337585
    [Abstract] [Full Text] [Related]

  • 13. Prediction of host - pathogen protein interactions between Mycobacterium tuberculosis and Homo sapiens using sequence motifs.
    Huo T, Liu W, Guo Y, Yang C, Lin J, Rao Z.
    BMC Bioinformatics; 2015 Mar 26; 16(1):100. PubMed ID: 25887594
    [Abstract] [Full Text] [Related]

  • 14. Cell death at the cross roads of host-pathogen interaction in Mycobacterium tuberculosis infection.
    Mohareer K, Asalla S, Banerjee S.
    Tuberculosis (Edinb); 2018 Dec 26; 113():99-121. PubMed ID: 30514519
    [Abstract] [Full Text] [Related]

  • 15. Global protein-protein interaction network in the human pathogen Mycobacterium tuberculosis H37Rv.
    Wang Y, Cui T, Zhang C, Yang M, Huang Y, Li W, Zhang L, Gao C, He Y, Li Y, Huang F, Zeng J, Huang C, Yang Q, Tian Y, Zhao C, Chen H, Zhang H, He ZG.
    J Proteome Res; 2010 Dec 03; 9(12):6665-77. PubMed ID: 20973567
    [Abstract] [Full Text] [Related]

  • 16. In silico unravelling pathogen-host signaling cross-talks via pathogen mimicry and human protein-protein interaction networks.
    Mei S, Zhang K.
    Comput Struct Biotechnol J; 2020 Dec 03; 18():100-113. PubMed ID: 31956393
    [Abstract] [Full Text] [Related]

  • 17. Mycobacterium tuberculosis-THP-1 like macrophages protein-protein interaction map revealed through dual RNA-seq analysis and a computational approach.
    Hkimi C, Kamoun S, Khamessi O, Ghedira K.
    J Med Microbiol; 2024 Feb 03; 73(2):. PubMed ID: 38314675
    [Abstract] [Full Text] [Related]

  • 18. From workstations to workbenches: Towards predicting physicochemically viable protein-protein interactions across a host and a pathogen.
    Ramakrishnan G, Chandra NR, Srinivasan N.
    IUBMB Life; 2014 Nov 03; 66(11):759-74. PubMed ID: 25512108
    [Abstract] [Full Text] [Related]

  • 19. [Frontier of mycobacterium research--host vs. mycobacterium].
    Okada M, Shirakawa T.
    Kekkaku; 2005 Sep 03; 80(9):613-29. PubMed ID: 16245793
    [Abstract] [Full Text] [Related]

  • 20. Predicting and analyzing interactions between Mycobacterium tuberculosis and its human host.
    Rapanoel HA, Mazandu GK, Mulder NJ.
    PLoS One; 2013 Sep 03; 8(7):e67472. PubMed ID: 23844013
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 24.