These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
378 related items for PubMed ID: 29956260
1. Utilization of rice husk to enhance calcium oxide-based sorbent prepared from waste cockle shells for cyclic CO2 capture in high-temperature condition. Mohamed M, Yusup S, Quitain AT, Kida T. Environ Sci Pollut Res Int; 2019 Nov; 26(33):33882-33896. PubMed ID: 29956260 [Abstract] [Full Text] [Related]
2. CO₂ uptake performance and life cycle assessment of CaO-based sorbents prepared from waste oyster shells blended with PMMA nanosphere scaffolds. Wang T, Xiao DC, Huang CH, Hsieh YK, Tan CS, Wang CF. J Hazard Mater; 2014 Apr 15; 270():92-101. PubMed ID: 24553353 [Abstract] [Full Text] [Related]
3. Development of sintering-resistant CaO-based sorbent derived from eggshells and bauxite tailings for cyclic CO2 capture. Shan S, Ma A, Hu Y, Jia Q, Wang Y, Peng J. Environ Pollut; 2016 Jan 15; 208(Pt B):546-52. PubMed ID: 26549755 [Abstract] [Full Text] [Related]
4. Tailor-Made Core-Shell CaO/TiO2-Al2O3 Architecture as a High-Capacity and Long-Life CO2 Sorbent. Peng W, Xu Z, Luo C, Zhao H. Environ Sci Technol; 2015 Jul 07; 49(13):8237-45. PubMed ID: 26047026 [Abstract] [Full Text] [Related]
5. Fabrication of CaO-based sorbents for CO₂ capture by a mixing method. Qin C, Liu W, An H, Yin J, Feng B. Environ Sci Technol; 2012 Feb 07; 46(3):1932-9. PubMed ID: 22216962 [Abstract] [Full Text] [Related]
6. Steam reactivation of spent CaO-based sorbent for multiple CO2 capture cycles. Manovic V, Anthony EJ. Environ Sci Technol; 2007 Feb 15; 41(4):1420-5. PubMed ID: 17593751 [Abstract] [Full Text] [Related]
7. CaO-based sorbent derived from lime mud and bauxite tailings for cyclic CO2 capture. Zhang Y, He L, Ma A, Jia Q, He S, Shan S. Environ Sci Pollut Res Int; 2018 Oct 15; 25(28):28015-28024. PubMed ID: 30066075 [Abstract] [Full Text] [Related]
8. Study of CO2 cyclic absorption stability of CaO-based sorbents derived from lime mud purified by sucrose method. Ma A, Jia Q, Su H, Zhi Y, Tian N, Wu J, Shan S. Environ Sci Pollut Res Int; 2016 Feb 15; 23(3):2530-6. PubMed ID: 26423292 [Abstract] [Full Text] [Related]
9. Advanced High-Temperature CO2 Sorbents with Improved Long-Term Cycling Stability. Nityashree N, Manohara GV, Maroto-Valer MM, Garcia S. ACS Appl Mater Interfaces; 2020 Jul 29; 12(30):33765-33774. PubMed ID: 32609484 [Abstract] [Full Text] [Related]
10. Porous spherical calcium aluminate-supported CaO-based pellets manufactured via biomass-templated extrusion-spheronization technique for cyclic CO2 capture. Li H, Hu Y, Chen H, Qu M. Environ Sci Pollut Res Int; 2019 Jul 29; 26(21):21972-21982. PubMed ID: 31144177 [Abstract] [Full Text] [Related]
11. CaO-based pellets supported by calcium aluminate cements for high-temperature CO2 capture. Manovic V, Anthony EJ. Environ Sci Technol; 2009 Sep 15; 43(18):7117-22. PubMed ID: 19806751 [Abstract] [Full Text] [Related]
12. Ca-rich Ca-Al-oxide, high-temperature-stable sorbents prepared from hydrotalcite precursors: synthesis, characterization, and CO2 capture capacity. Chang PH, Chang YP, Chen SY, Yu CT, Chyou YP. ChemSusChem; 2011 Dec 16; 4(12):1844-51. PubMed ID: 22072595 [Abstract] [Full Text] [Related]
13. Effect of pelletization and addition of steam on the cyclic performance of carbon-templated, CaO-based CO2 sorbents. Broda M, Manovic V, Anthony EJ, Müller CR. Environ Sci Technol; 2014 May 06; 48(9):5322-8. PubMed ID: 24678727 [Abstract] [Full Text] [Related]
14. Green Synthesis of Nanosilica from Coal Fly Ash and Its Stabilizing Effect on CaO Sorbents for CO2 Capture. Yan F, Jiang J, Li K, Liu N, Chen X, Gao Y, Tian S. Environ Sci Technol; 2017 Jul 05; 51(13):7606-7615. PubMed ID: 28585813 [Abstract] [Full Text] [Related]
15. Synthesis of CaO-based sorbents for CO(2) capture by a spray-drying technique. Liu W, Yin J, Qin C, Feng B, Xu M. Environ Sci Technol; 2012 Oct 16; 46(20):11267-72. PubMed ID: 22938656 [Abstract] [Full Text] [Related]
16. Synthesis of highly efficient CaO-based, self-stabilizing CO2 sorbents via structure-reforming of steel slag. Tian S, Jiang J, Yan F, Li K, Chen X. Environ Sci Technol; 2015 Jun 16; 49(12):7464-72. PubMed ID: 25961319 [Abstract] [Full Text] [Related]
17. High temperature CO2 capture using calcium oxide sorbent in a fixed-bed reactor. Dou B, Song Y, Liu Y, Feng C. J Hazard Mater; 2010 Nov 15; 183(1-3):759-65. PubMed ID: 20724072 [Abstract] [Full Text] [Related]
18. High temperature capture of CO2 on lithium-based sorbents from rice husk ash. Wang K, Guo X, Zhao P, Wang F, Zheng C. J Hazard Mater; 2011 May 15; 189(1-2):301-7. PubMed ID: 21397399 [Abstract] [Full Text] [Related]
19. Influence of high-temperature steam on the reactivity of CaO sorbent for CO₂ capture. Donat F, Florin NH, Anthony EJ, Fennell PS. Environ Sci Technol; 2012 Jan 17; 46(2):1262-9. PubMed ID: 22191682 [Abstract] [Full Text] [Related]
20. Preparation of stable tetraethylenepentamine-modified ordered mesoporous silica sorbents by recycling natural Equisetum ramosissimum. Liu SH, Kuok CH. Chemosphere; 2018 Jan 17; 191():566-572. PubMed ID: 29073565 [Abstract] [Full Text] [Related] Page: [Next] [New Search]