These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


596 related items for PubMed ID: 29965096

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Electricity generation from real industrial wastewater using a single-chamber air cathode microbial fuel cell with an activated carbon anode.
    Mohamed HO, Obaid M, Sayed ET, Liu Y, Lee J, Park M, Barakat NAM, Kim HY.
    Bioprocess Biosyst Eng; 2017 Aug; 40(8):1151-1161. PubMed ID: 28526899
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Effectiveness of constructed wetland integrated with microbial fuel cell for domestic wastewater treatment and to facilitate power generation.
    Yadav A, Jadhav DA, Ghangrekar MM, Mitra A.
    Environ Sci Pollut Res Int; 2022 Jul; 29(34):51117-51129. PubMed ID: 34826088
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Effective and Economical 3D Carbon Sponge with Carbon Nanoparticles as Floating Air Cathode for Sustainable Electricity Production in Microbial Fuel Cells.
    Wang S, Gariepy Y, Adekunle A, Raghavan V.
    Appl Biochem Biotechnol; 2024 Apr; 196(4):1820-1839. PubMed ID: 37440114
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Anode macrostructures influence electricity generation in microbial fuel cells for wastewater treatment.
    Ishii Y, Miyahara M, Watanabe K.
    J Biosci Bioeng; 2017 Jan; 123(1):91-95. PubMed ID: 27514908
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Investigating effect of proton-exchange membrane on new air-cathode single-chamber microbial fuel cell configuration for bioenergy recovery from Azorubine dye degradation.
    Kardi SN, Ibrahim N, Rashid NAA, Darzi GN.
    Environ Sci Pollut Res Int; 2019 Jul; 26(21):21201-21215. PubMed ID: 31115820
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Development of anode zone using dual-anode system to reduce organic matter crossover in membraneless microbial fuel cells.
    Kim J, Kim B, An J, Lee YS, Chang IS.
    Bioresour Technol; 2016 Aug; 213():140-145. PubMed ID: 26972026
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Characterization of the COD removal, electricity generation, and bacterial communities in microbial fuel cells treating molasses wastewater.
    Lee YY, Kim TG, Cho KS.
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016 Nov 09; 51(13):1131-8. PubMed ID: 27428492
    [Abstract] [Full Text] [Related]

  • 19. Evaluation of organic matter removal and electricity generation by using integrated microbial fuel cells for wastewater treatment.
    Yamashita T, Ishida M, Ogino A, Yokoyama H.
    Environ Technol; 2016 Nov 09; 37(2):228-36. PubMed ID: 26118304
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 30.