These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
449 related items for PubMed ID: 29969379
41. What does genetic diversity of Aspergillus flavus tell us about Aspergillus oryzae? Chang PK, Ehrlich KC. Int J Food Microbiol; 2010 Apr 15; 138(3):189-99. PubMed ID: 20163884 [Abstract] [Full Text] [Related]
42. Laboratory tests for assessing efficacy of atoxigenic Aspergillus flavus strains as biocontrol agents. Degola F, Berni E, Restivo FM. Int J Food Microbiol; 2011 Apr 29; 146(3):235-43. PubMed ID: 21419507 [Abstract] [Full Text] [Related]
43. Comparative genome analysis of Aspergillus flavus clinically isolated in Japan. Toyotome T, Hamada S, Yamaguchi S, Takahashi H, Kondoh D, Takino M, Kanesaki Y, Kamei K. DNA Res; 2019 Feb 01; 26(1):95-103. PubMed ID: 30520983 [Abstract] [Full Text] [Related]
44. Comparison of expression of secondary metabolite biosynthesis cluster genes in Aspergillus flavus, A. parasiticus, and A. oryzae. Ehrlich KC, Mack BM. Toxins (Basel); 2014 Jun 23; 6(6):1916-28. PubMed ID: 24960201 [Abstract] [Full Text] [Related]
45. Molecular characterization of an atoxigenic Aspergillus flavus strain AF051. Jiang J, Yan L, Ma Z. Appl Microbiol Biotechnol; 2009 Jun 23; 83(3):501-5. PubMed ID: 19255755 [Abstract] [Full Text] [Related]
46. Effect of sexual recombination on population diversity in aflatoxin production by Aspergillus flavus and evidence for cryptic heterokaryosis. Olarte RA, Horn BW, Dorner JW, Monacell JT, Singh R, Stone EA, Carbone I. Mol Ecol; 2012 Mar 23; 21(6):1453-76. PubMed ID: 22212063 [Abstract] [Full Text] [Related]
47. Characterization of aflatoxigenic and non-aflatoxigenic Aspergillus flavus isolates from pistachio. Hua SS, McAlpin CE, Chang PK, Sarreal SB. Mycotoxin Res; 2012 Feb 23; 28(1):67-75. PubMed ID: 23605984 [Abstract] [Full Text] [Related]
48. A survey on distribution of Aspergillus section Flavi in corn field soils in Iran: population patterns based on aflatoxins, cyclopiazonic acid and sclerotia production. Razzaghi-Abyaneh M, Shams-Ghahfarokhi M, Allameh A, Kazeroon-Shiri A, Ranjbar-Bahadori S, Mirzahoseini H, Rezaee MB. Mycopathologia; 2006 Mar 23; 161(3):183-92. PubMed ID: 16482391 [Abstract] [Full Text] [Related]
49. Use of UHPLC high-resolution Orbitrap mass spectrometry to investigate the genes involved in the production of secondary metabolites in Aspergillus flavus. Arroyo-Manzanares N, Di Mavungu JD, Uka V, Malysheva SV, Cary JW, Ehrlich KC, Vanhaecke L, Bhatnagar D, De Saeger S. Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015 Mar 23; 32(10):1656-73. PubMed ID: 26278397 [Abstract] [Full Text] [Related]
50. Variability of aflatoxin and cyclopiazonic acid production by Aspergillus section flavi from different substrates in Argentina. Vaamonde G, Patriarca A, Fernández Pinto V, Comerio R, Degrossi C. Int J Food Microbiol; 2003 Nov 15; 88(1):79-84. PubMed ID: 14527788 [Abstract] [Full Text] [Related]
51. Biological control as a strategy to reduce the impact of mycotoxins in peanuts, grapes and cereals in Argentina. Chulze SN, Palazzini JM, Torres AM, Barros G, Ponsone ML, Geisen R, Schmidt-Heydt M, Köhl J. Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015 Nov 15; 32(4):471-9. PubMed ID: 25427716 [Abstract] [Full Text] [Related]
52. Production of cyclopiazonic acid by aflatoxigenic and non-aflatoxigenic strains of Aspergillus flavus. Cvetnić Z, Pepeljnjak S. Nahrung; 1998 Oct 15; 42(5):321-3. PubMed ID: 9829270 [Abstract] [Full Text] [Related]
53. Variability among atoxigenic Aspergillus flavus strains in ability to prevent aflatoxin contamination and production of aflatoxin biosynthetic pathway enzymes. Cotty PJ, Bhatnagar D. Appl Environ Microbiol; 1994 Jul 15; 60(7):2248-51. PubMed ID: 8074506 [Abstract] [Full Text] [Related]
54. Genetic Responses and Aflatoxin Inhibition during Co-Culture of Aflatoxigenic and Non-Aflatoxigenic Aspergillus flavus. Sweany RR, Mack BM, Moore GG, Gilbert MK, Cary JW, Lebar MD, Rajasekaran K, Damann KE. Toxins (Basel); 2021 Nov 11; 13(11):. PubMed ID: 34822579 [Abstract] [Full Text] [Related]
55. Aspergillus flavus genomics as a tool for studying the mechanism of aflatoxin formation. Yu J, Payne GA, Nierman WC, Machida M, Bennett JW, Campbell BC, Robens JF, Bhatnagar D, Dean RA, Cleveland TE. Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2008 Sep 11; 25(9):1152-7. PubMed ID: 19238624 [Abstract] [Full Text] [Related]
56. Identification of Aspergillus flavus isolates as potential biocontrol agents of aflatoxin contamination in crops. Rosada LJ, Sant'anna JR, Franco CC, Esquissato GN, Santos PA, Yajima JP, Ferreira FD, Machinski M, Corrêa B, Castro-Prado MA. J Food Prot; 2013 Jun 11; 76(6):1051-5. PubMed ID: 23726204 [Abstract] [Full Text] [Related]
57. Production of cyclopiazonic acid, aflatrem, and aflatoxin by Aspergillus flavus is regulated by veA, a gene necessary for sclerotial formation. Duran RM, Cary JW, Calvo AM. Appl Microbiol Biotechnol; 2007 Jan 11; 73(5):1158-68. PubMed ID: 16988822 [Abstract] [Full Text] [Related]
58. Aflatoxin in Chili Peppers in Nigeria: Extent of Contamination and Control Using Atoxigenic Aspergillus flavus Genotypes as Biocontrol Agents. Ezekiel CN, Ortega-Beltran A, Oyedeji EO, Atehnkeng J, Kössler P, Tairu F, Hoeschle-Zeledon I, Karlovsky P, Cotty PJ, Bandyopadhyay R. Toxins (Basel); 2019 Jul 22; 11(7):. PubMed ID: 31336571 [Abstract] [Full Text] [Related]
59. Aspergillus flavus diversity on crops and in the environment can be exploited to reduce aflatoxin exposure and improve health. Mehl HL, Jaime R, Callicott KA, Probst C, Garber NP, Ortega-Beltran A, Grubisha LC, Cotty PJ. Ann N Y Acad Sci; 2012 Dec 22; 1273():7-17. PubMed ID: 23230832 [Abstract] [Full Text] [Related]