These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
531 related items for PubMed ID: 29982032
1. Controlled charge-dynamics in cobalt-doped TiO2 nanowire photoanodes for enhanced photoelectrochemical water splitting. Liu C, Wang F, Zhu S, Xu Y, Liang Q, Chen Z. J Colloid Interface Sci; 2018 Nov 15; 530():403-411. PubMed ID: 29982032 [Abstract] [Full Text] [Related]
2. Controlled Sn-doping in TiO2 nanowire photoanodes with enhanced photoelectrochemical conversion. Xu M, Da P, Wu H, Zhao D, Zheng G. Nano Lett; 2012 Mar 14; 12(3):1503-8. PubMed ID: 22364360 [Abstract] [Full Text] [Related]
3. Heterostructured TiO2 Nanorod@Nanobowl Arrays for Efficient Photoelectrochemical Water Splitting. Wang W, Dong J, Ye X, Li Y, Ma Y, Qi L. Small; 2016 Mar 14; 12(11):1469-78. PubMed ID: 26779803 [Abstract] [Full Text] [Related]
4. Fluorine and tin co-doping synergistically improves the photoelectrochemical water oxidation performance of TiO2 nanorod arrays by enhancing the ultraviolet light conversion efficiency. Wu T, Chen C, Wei Y, Lu R, Wang L, Jiang X. Dalton Trans; 2019 Aug 28; 48(32):12096-12104. PubMed ID: 31321391 [Abstract] [Full Text] [Related]
5. Simultaneous etching and doping of TiO2 nanowire arrays for enhanced photoelectrochemical performance. Wang Y, Zhang YY, Tang J, Wu H, Xu M, Peng Z, Gong XG, Zheng G. ACS Nano; 2013 Oct 22; 7(10):9375-83. PubMed ID: 24047133 [Abstract] [Full Text] [Related]
6. Mesoporous Ultrathin In2O3 Nanosheet Cocatalysts on a Silicon Nanowire Photoanode for Efficient Photoelectrochemical Water Splitting. Yan G, Dong Y, Wu T, Xing S, Wang X. ACS Appl Mater Interfaces; 2021 Nov 10; 13(44):52912-52920. PubMed ID: 34709787 [Abstract] [Full Text] [Related]
7. Enhanced Photoelectrochemical Performance from Rationally Designed Anatase/Rutile TiO2 Heterostructures. Cao F, Xiong J, Wu F, Liu Q, Shi Z, Yu Y, Wang X, Li L. ACS Appl Mater Interfaces; 2016 May 18; 8(19):12239-45. PubMed ID: 27136708 [Abstract] [Full Text] [Related]
8. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris RC, Wang C, Zhang JZ, Li Y. Nano Lett; 2011 Jul 13; 11(7):3026-33. PubMed ID: 21710974 [Abstract] [Full Text] [Related]
9. Fabrication of an Efficient BiVO4-TiO2 Heterojunction Photoanode for Photoelectrochemical Water Oxidation. Cheng BY, Yang JS, Cho HW, Wu JJ. ACS Appl Mater Interfaces; 2016 Aug 10; 8(31):20032-9. PubMed ID: 27454929 [Abstract] [Full Text] [Related]
10. Hydrogen-doped Brookite TiO2 Nanobullets Array as a Novel Photoanode for Efficient Solar Water Splitting. Choi M, Lee JH, Jang YJ, Kim D, Lee JS, Jang HM, Yong K. Sci Rep; 2016 Oct 26; 6():36099. PubMed ID: 27782198 [Abstract] [Full Text] [Related]
11. Hierarchically branched Fe2O3@TiO2 nanorod arrays for photoelectrochemical water splitting: facile synthesis and enhanced photoelectrochemical performance. Li Y, Wei X, Zhu B, Wang H, Tang Y, Sum TC, Chen X. Nanoscale; 2016 Jun 07; 8(21):11284-90. PubMed ID: 27189633 [Abstract] [Full Text] [Related]
12. 3D FTO/FTO-Nanocrystal/TiO2 Composite Inverse Opal Photoanode for Efficient Photoelectrochemical Water Splitting. Wang Z, Li X, Ling H, Tan CK, Yeo LP, Grimsdale AC, Tok AIY. Small; 2018 May 07; 14(20):e1800395. PubMed ID: 29665266 [Abstract] [Full Text] [Related]
13. Trade-off between Zr Passivation and Sn Doping on Hematite Nanorod Photoanodes for Efficient Solar Water Oxidation: Effects of a ZrO2 Underlayer and FTO Deformation. Subramanian A, Annamalai A, Lee HH, Choi SH, Ryu J, Park JH, Jang JS. ACS Appl Mater Interfaces; 2016 Aug 03; 8(30):19428-37. PubMed ID: 27420603 [Abstract] [Full Text] [Related]
14. Cobalt phosphate modified TiO2 nanowire arrays as co-catalysts for solar water splitting. Ai G, Mo R, Li H, Zhong J. Nanoscale; 2015 Apr 21; 7(15):6722-8. PubMed ID: 25804292 [Abstract] [Full Text] [Related]
15. Controlled fabrication of Sn/TiO2 nanorods for photoelectrochemical water splitting. Sun B, Shi T, Peng Z, Sheng W, Jiang T, Liao G. Nanoscale Res Lett; 2013 Nov 05; 8(1):462. PubMed ID: 24191909 [Abstract] [Full Text] [Related]
16. Two-Dimensional Sb Modified TiO2 Nanorod Arrays as Photoanodes for Efficient Solar Water Splitting. Gao J, Zhang S, Ma X, Sun Y, Zhang X. Nanomaterials (Basel); 2023 Apr 06; 13(7):. PubMed ID: 37049386 [Abstract] [Full Text] [Related]
17. Significantly Enhanced Visible Light Photoelectrochemical Activity in TiO₂ Nanowire Arrays by Nitrogen Implantation. Wang G, Xiao X, Li W, Lin Z, Zhao Z, Chen C, Wang C, Li Y, Huang X, Miao L, Jiang C, Huang Y, Duan X. Nano Lett; 2015 Jul 08; 15(7):4692-8. PubMed ID: 26052643 [Abstract] [Full Text] [Related]
18. 2D ZnIn(2)S(4) nanosheet/1D TiO(2) nanorod heterostructure arrays for improved photoelectrochemical water splitting. Liu Q, Lu H, Shi Z, Wu F, Guo J, Deng K, Li L. ACS Appl Mater Interfaces; 2014 Oct 08; 6(19):17200-7. PubMed ID: 25225738 [Abstract] [Full Text] [Related]
19. Effect of doping (C or N) and co-doping (C+N) on the photoactive properties of magnetron sputtered titania coatings for the application of solar water-splitting. Rahman M, Dang BH, McDonnell K, MacElroy JM, Dowling DP. J Nanosci Nanotechnol; 2012 Jun 08; 12(6):4729-35. PubMed ID: 22905523 [Abstract] [Full Text] [Related]
20. Novel phosphorus doped carbon nitride modified TiO₂ nanotube arrays with improved photoelectrochemical performance. Su J, Geng P, Li X, Zhao Q, Quan X, Chen G. Nanoscale; 2015 Oct 21; 7(39):16282-9. PubMed ID: 26376767 [Abstract] [Full Text] [Related] Page: [Next] [New Search]