These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


208 related items for PubMed ID: 29986494

  • 1. Environmentally-Friendly Extraction of Cellulose Nanofibers from Steam-Explosion Pretreated Sugar Beet Pulp.
    Yang W, Feng Y, He H, Yang Z.
    Materials (Basel); 2018 Jul 07; 11(7):. PubMed ID: 29986494
    [Abstract] [Full Text] [Related]

  • 2. Chlorine-free extraction and structural characterization of cellulose nanofibers from waste husk of millet (Pennisetum glaucum).
    Midhun Dominic CD, Raj V, Neenu KV, Begum PMS, Formela K, Saeb MR, Prabhu DD, Poornima Vijayan P, Ajithkumar TG, Parameswaranpillai J.
    Int J Biol Macromol; 2022 May 01; 206():92-104. PubMed ID: 35217088
    [Abstract] [Full Text] [Related]

  • 3. Preparation and characterization of cellulose nanofibers from de-pectinated sugar beet pulp.
    Li M, Wang LJ, Li D, Cheng YL, Adhikari B.
    Carbohydr Polym; 2014 Feb 15; 102():136-43. PubMed ID: 24507265
    [Abstract] [Full Text] [Related]

  • 4. Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization.
    Kaushik A, Singh M.
    Carbohydr Res; 2011 Jan 03; 346(1):76-85. PubMed ID: 21094489
    [Abstract] [Full Text] [Related]

  • 5. Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization.
    Zhao J, Zhang W, Zhang X, Zhang X, Lu C, Deng Y.
    Carbohydr Polym; 2013 Sep 12; 97(2):695-702. PubMed ID: 23911503
    [Abstract] [Full Text] [Related]

  • 6. Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion.
    Deepa B, Abraham E, Cherian BM, Bismarck A, Blaker JJ, Pothan LA, Leao AL, de Souza SF, Kottaisamy M.
    Bioresour Technol; 2011 Jan 12; 102(2):1988-97. PubMed ID: 20926289
    [Abstract] [Full Text] [Related]

  • 7. A comparison of various lignin-extraction methods to enhance the accessibility and ease of enzymatic hydrolysis of the cellulosic component of steam-pretreated poplar.
    Tian D, Chandra RP, Lee JS, Lu C, Saddler JN.
    Biotechnol Biofuels; 2017 Jan 12; 10():157. PubMed ID: 28649276
    [Abstract] [Full Text] [Related]

  • 8. Extraction of Cellulose Nanofibers via Eco-friendly Supercritical Carbon Dioxide Treatment Followed by Mild Acid Hydrolysis and the Fabrication of Cellulose Nanopapers.
    Atiqah MSN, Gopakumar DA, F A T O, Pottathara YB, Rizal S, Aprilia NAS, Hermawan D, Paridah MTT, Thomas S, H P S AK.
    Polymers (Basel); 2019 Nov 05; 11(11):. PubMed ID: 31694184
    [Abstract] [Full Text] [Related]

  • 9. Extraction and characterization of cellulose nanofibers from Rose stems (Rosa spp.).
    Ventura-Cruz S, Tecante A.
    Carbohydr Polym; 2019 Sep 15; 220():53-59. PubMed ID: 31196550
    [Abstract] [Full Text] [Related]

  • 10. Deconstruction of corncob by steam explosion pretreatment: Correlations between sugar conversion and recalcitrant structures.
    Zhang X, Yuan Q, Cheng G.
    Carbohydr Polym; 2017 Jan 20; 156():351-356. PubMed ID: 27842833
    [Abstract] [Full Text] [Related]

  • 11. Effect of Processing Time of Steam-Explosion for the Extraction of Cellulose Fibers from Phoenix canariensis Palm Leaves as Potential Renewable Feedstock for Materials.
    Pérez-Limiñana MA, Pérez-Aguilar H, Ruzafa-Silvestre C, Orgilés-Calpena E, Arán-Ais F.
    Polymers (Basel); 2022 Nov 29; 14(23):. PubMed ID: 36501600
    [Abstract] [Full Text] [Related]

  • 12. Industrial-scale steam explosion pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production of second generation ethanol and value-added products.
    Oliveira FM, Pinheiro IO, Souto-Maior AM, Martin C, Gonçalves AR, Rocha GJ.
    Bioresour Technol; 2013 Feb 29; 130():168-73. PubMed ID: 23306125
    [Abstract] [Full Text] [Related]

  • 13. Cellulose nanofibers from lignocellulosic biomass of lemongrass using enzymatic hydrolysis: characterization and cytotoxicity assessment.
    Kumari P, Pathak G, Gupta R, Sharma D, Meena A.
    Daru; 2019 Dec 29; 27(2):683-693. PubMed ID: 31654377
    [Abstract] [Full Text] [Related]

  • 14. Isolation of cellulose nanofibers from rapeseed straw via chlorine-free purification method and its application as reinforcing agent in carboxymethyl cellulose-based films.
    Mirzaee N, Nikzad M, Battisti R, Araghi A.
    Int J Biol Macromol; 2023 Nov 01; 251():126405. PubMed ID: 37597636
    [Abstract] [Full Text] [Related]

  • 15. A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres.
    Mtibe A, Linganiso LZ, Mathew AP, Oksman K, John MJ, Anandjiwala RD.
    Carbohydr Polym; 2015 Mar 15; 118():1-8. PubMed ID: 25542099
    [Abstract] [Full Text] [Related]

  • 16. Enhanced the enzymatic hydrolysis efficiency of wheat straw after combined steam explosion and laccase pretreatment.
    Qiu W, Chen H.
    Bioresour Technol; 2012 Aug 15; 118():8-12. PubMed ID: 22695139
    [Abstract] [Full Text] [Related]

  • 17. Rice straw-derived cellulose: a comparative study of various pre-treatment technologies and its conversion to nanofibres.
    Sharma N, Allardyce BJ, Rajkhowa R, Agrawal R.
    Sci Rep; 2023 Sep 28; 13(1):16327. PubMed ID: 37770522
    [Abstract] [Full Text] [Related]

  • 18. Isolation and characterization of cellulose nanofibers from Agave gigantea by chemical-mechanical treatment.
    Syafri E, Jamaluddin, Sari NH, Mahardika M, Amanda P, Ilyas RA.
    Int J Biol Macromol; 2022 Mar 01; 200():25-33. PubMed ID: 34971644
    [Abstract] [Full Text] [Related]

  • 19. Enzymatic pretreatment for cellulose nanofibrils isolation from bagasse pulp: Transition of cellulose crystal structure.
    Tao P, Zhang Y, Wu Z, Liao X, Nie S.
    Carbohydr Polym; 2019 Jun 15; 214():1-7. PubMed ID: 30925976
    [Abstract] [Full Text] [Related]

  • 20. Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: Extrusion processing.
    Ghanbari A, Tabarsa T, Ashori A, Shakeri A, Mashkour M.
    Int J Biol Macromol; 2018 Jun 15; 112():442-447. PubMed ID: 29410268
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.