These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


665 related items for PubMed ID: 29993454

  • 21. Electrothermal pumping with interdigitated electrodes and resistive heaters.
    Williams SJ, Green NG.
    Electrophoresis; 2015 Aug; 36(15):1681-9. PubMed ID: 26010255
    [Abstract] [Full Text] [Related]

  • 22. Reservoir-based dielectrophoresis for microfluidic particle separation by charge.
    Patel S, Qian S, Xuan X.
    Electrophoresis; 2013 Apr; 34(7):961-8. PubMed ID: 23161644
    [Abstract] [Full Text] [Related]

  • 23. Numerical simulation of dielectrophoretic separation of live/dead cells using a three-dimensional nonuniform AC electric field in micro-fabricated devices.
    Tada S.
    Biorheology; 2015 Apr; 52(3):211-24. PubMed ID: 26406782
    [Abstract] [Full Text] [Related]

  • 24. Continuous separation of multiple particles by negative and positive dielectrophoresis in a modified H-filter.
    Lewpiriyawong N, Yang C.
    Electrophoresis; 2014 Mar; 35(5):714-20. PubMed ID: 24338796
    [Abstract] [Full Text] [Related]

  • 25. Enhanced model-based design of a high-throughput three dimensional micromixer driven by alternating-current electrothermal flow.
    Wu Y, Ren Y, Jiang H.
    Electrophoresis; 2017 Jan; 38(2):258-269. PubMed ID: 27387819
    [Abstract] [Full Text] [Related]

  • 26. Dielectrophoresis switching with vertical sidewall electrodes for microfluidic flow cytometry.
    Wang L, Flanagan LA, Monuki E, Jeon NL, Lee AP.
    Lab Chip; 2007 Sep; 7(9):1114-20. PubMed ID: 17713608
    [Abstract] [Full Text] [Related]

  • 27. Cell pairing using microwell array electrodes based on dielectrophoresis.
    Yoshimura Y, Tomita M, Mizutani F, Yasukawa T.
    Anal Chem; 2014 Jul 15; 86(14):6818-22. PubMed ID: 24947270
    [Abstract] [Full Text] [Related]

  • 28. Electrokinetic biased deterministic lateral displacement: scaling analysis and simulations.
    Calero V, García-Sánchez P, Ramos A, Morgan H.
    J Chromatogr A; 2020 Jul 19; 1623():461151. PubMed ID: 32505271
    [Abstract] [Full Text] [Related]

  • 29. Fabrication of continuous flow microfluidics device with 3D electrode structures for high throughput DEP applications using mechanical machining.
    Zeinali S, Çetin B, Oliaei SN, Karpat Y.
    Electrophoresis; 2015 Jul 19; 36(13):1432-42. PubMed ID: 25808433
    [Abstract] [Full Text] [Related]

  • 30. Design of optimal electrode geometries for dielectrophoresis using fitness based on simplified particle trajectories.
    Kinio S, Mills JK.
    Biomed Microdevices; 2016 Aug 19; 18(4):69. PubMed ID: 27432322
    [Abstract] [Full Text] [Related]

  • 31. Dielectrophoretic separation of micron and submicron particles: a review.
    Dash S, Mohanty S.
    Electrophoresis; 2014 Sep 19; 35(18):2656-72. PubMed ID: 24930837
    [Abstract] [Full Text] [Related]

  • 32. AC dielectrophoretic manipulation and electroporation of vaccinia virus using carbon nanoelectrode arrays.
    Madiyar FR, Haller SL, Farooq O, Rothenburg S, Culbertson C, Li J.
    Electrophoresis; 2017 Jun 19; 38(11):1515-1525. PubMed ID: 28211116
    [Abstract] [Full Text] [Related]

  • 33. Dielectrophoretic mobility determination in DC insulator-based dielectrophoresis.
    Weiss NG, Jones PV, Mahanti P, Chen KP, Taylor TJ, Hayes MA.
    Electrophoresis; 2011 Sep 19; 32(17):2292-7. PubMed ID: 21823129
    [Abstract] [Full Text] [Related]

  • 34. Lab-on-a-chip device for continuous particle and cell separation based on electrical properties via alternating current dielectrophoresis.
    Cetin B, Li D.
    Electrophoresis; 2010 Sep 19; 31(18):3035-43. PubMed ID: 20872609
    [Abstract] [Full Text] [Related]

  • 35. Numerical and experimental investigation of the deviation of microparticles inside the microchannel using the vortices caused by the ICEK phenomenon.
    Ghadamgahi SME, Shahmardan MM, Nazari M, Mansouri H, Hashemi NN.
    Electrophoresis; 2024 Apr 19; 45(7-8):720-734. PubMed ID: 38111364
    [Abstract] [Full Text] [Related]

  • 36. Toward low-voltage dielectrophoresis-based microfluidic systems: A review.
    Ramirez-Murillo CJ, de Los Santos-Ramirez JM, Perez-Gonzalez VH.
    Electrophoresis; 2021 Mar 19; 42(5):565-587. PubMed ID: 33166414
    [Abstract] [Full Text] [Related]

  • 37. Experimental study of dielectrophoresis and liquid dielectrophoresis mechanisms for particle capture in a droplet.
    Tsai SL, Hong JL, Chen MK, Jang LS.
    Electrophoresis; 2011 Jun 19; 32(11):1337-47. PubMed ID: 21538398
    [Abstract] [Full Text] [Related]

  • 38. Particle trapping in electrically driven insulator-based microfluidics: Dielectrophoresis and induced-charge electrokinetics.
    Perez-Gonzalez VH.
    Electrophoresis; 2021 Dec 19; 42(23):2445-2464. PubMed ID: 34081787
    [Abstract] [Full Text] [Related]

  • 39. Numerical investigation of ternary particle separation in a microchannel with a wall-mounted obstacle using dielectrophoresis.
    Derakhshan R, Bozorgzadeh A, Ramiar A.
    J Chromatogr A; 2023 Aug 02; 1702():464079. PubMed ID: 37263054
    [Abstract] [Full Text] [Related]

  • 40. Simulation and analysis of geometric parameters based on Taguchi method in Y-Y microfluidic device for circulating tumor cell separation by alternating current dielectrophoresis.
    Lv B, Cai J.
    J Chromatogr A; 2023 Mar 29; 1693():463894. PubMed ID: 36854211
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 34.