These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
378 related items for PubMed ID: 30001594
1. Enhanced cellulosic ethanol production via consolidated bioprocessing by Clostridium thermocellum ATCC 31924☆. Singh N, Mathur AS, Gupta RP, Barrow CJ, Tuli D, Puri M. Bioresour Technol; 2018 Feb; 250():860-867. PubMed ID: 30001594 [Abstract] [Full Text] [Related]
2. Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and β-glucosidase. Kim S, Baek SH, Lee K, Hahn JS. Microb Cell Fact; 2013 Feb 05; 12():14. PubMed ID: 23383678 [Abstract] [Full Text] [Related]
3. Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum. Papanek B, Biswas R, Rydzak T, Guss AM. Metab Eng; 2015 Nov 05; 32():49-54. PubMed ID: 26369438 [Abstract] [Full Text] [Related]
4. Impact of pretreated Switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. Raman B, Pan C, Hurst GB, Rodriguez M, McKeown CK, Lankford PK, Samatova NF, Mielenz JR. PLoS One; 2009 Nov 05; 4(4):e5271. PubMed ID: 19384422 [Abstract] [Full Text] [Related]
5. Factors influencing cellulosome activity in consolidated bioprocessing of cellulosic ethanol. Xu C, Qin Y, Li Y, Ji Y, Huang J, Song H, Xu J. Bioresour Technol; 2010 Dec 05; 101(24):9560-9. PubMed ID: 20702089 [Abstract] [Full Text] [Related]
6. Growth and expression of relevant metabolic genes of Clostridium thermocellum cultured on lignocellulosic residues. Leitão VO, Noronha EF, Camargo BR, Hamann PRV, Steindorff AS, Quirino BF, de Sousa MV, Ulhoa CJ, Felix CR. J Ind Microbiol Biotechnol; 2017 Jun 05; 44(6):825-834. PubMed ID: 28181082 [Abstract] [Full Text] [Related]
7. Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation. Raman B, McKeown CK, Rodriguez M, Brown SD, Mielenz JR. BMC Microbiol; 2011 Jun 14; 11():134. PubMed ID: 21672225 [Abstract] [Full Text] [Related]
9. Production of minicellulosomes from Clostridium cellulovorans for the fermentation of cellulosic ethanol using engineered recombinant Saccharomyces cerevisiae. Hyeon JE, Yu KO, Suh DJ, Suh YW, Lee SE, Lee J, Han SO. FEMS Microbiol Lett; 2010 Sep 01; 310(1):39-47. PubMed ID: 20637040 [Abstract] [Full Text] [Related]
10. Revisiting the Regulation of the Primary Scaffoldin Gene in Clostridium thermocellum. Ortiz de Ora L, Muñoz-Gutiérrez I, Bayer EA, Shoham Y, Lamed R, Borovok I. Appl Environ Microbiol; 2017 Apr 15; 83(8):. PubMed ID: 28159788 [Abstract] [Full Text] [Related]
11. Anaerobic microplate assay for direct microbial conversion of switchgrass and Avicel using Clostridium thermocellum. Oguntimein GB, Rodriguez M, Dumitrache A, Shollenberger T, Decker SR, Davison BH, Brown SD. Biotechnol Lett; 2018 Feb 15; 40(2):303-308. PubMed ID: 29124514 [Abstract] [Full Text] [Related]
12. Continuous hydrogen production during fermentation of alpha-cellulose by the thermophillic bacterium Clostridium thermocellum. Magnusson L, Cicek N, Sparling R, Levin D. Biotechnol Bioeng; 2009 Feb 15; 102(3):759-66. PubMed ID: 18828175 [Abstract] [Full Text] [Related]
13. Efficient saccharification of ammonia soaked rice straw by combination of Clostridium thermocellum cellulosome and Thermoanaerobacter brockii β-glucosidase. Waeonukul R, Kosugi A, Tachaapaikoon C, Pason P, Ratanakhanokchai K, Prawitwong P, Deng L, Saito M, Mori Y. Bioresour Technol; 2012 Mar 15; 107():352-7. PubMed ID: 22257861 [Abstract] [Full Text] [Related]
14. Nitrogen and sulfur requirements for Clostridium thermocellum and Caldicellulosiruptor bescii on cellulosic substrates in minimal nutrient media. Kridelbaugh DM, Nelson J, Engle NL, Tschaplinski TJ, Graham DE. Bioresour Technol; 2013 Feb 15; 130():125-35. PubMed ID: 23306120 [Abstract] [Full Text] [Related]
15. Sequential and consolidated bioprocessing of biogenic municipal solid waste: A strategic pairing of thermophilic anaerobe and mesophilic microaerobe for ethanol production. Althuri A, Venkata Mohan S. Bioresour Technol; 2020 Jul 15; 308():123260. PubMed ID: 32251860 [Abstract] [Full Text] [Related]
16. [Cellulose hydrolysis and ethanol production by a facultative anaerobe bacteria consortium H and its identification]. Du R, Li S, Zhang X, Wang L. Sheng Wu Gong Cheng Xue Bao; 2010 Jul 15; 26(7):960-5. PubMed ID: 20954397 [Abstract] [Full Text] [Related]
17. How does cellulosome composition influence deconstruction of lignocellulosic substrates in Clostridium (Ruminiclostridium) thermocellum DSM 1313? Yoav S, Barak Y, Shamshoum M, Borovok I, Lamed R, Dassa B, Hadar Y, Morag E, Bayer EA. Biotechnol Biofuels; 2017 Jul 15; 10():222. PubMed ID: 28932263 [Abstract] [Full Text] [Related]
18. Elucidating central metabolic redox obstacles hindering ethanol production in Clostridium thermocellum. Thompson RA, Layton DS, Guss AM, Olson DG, Lynd LR, Trinh CT. Metab Eng; 2015 Nov 15; 32():207-219. PubMed ID: 26497628 [Abstract] [Full Text] [Related]
19. Adaptive evolution of Clostridium thermocellum ATCC 27405 on alternate carbon sources leads to altered fermentation profiles. Daley SR, Kirby S, Sparling R. Can J Microbiol; 2024 Sep 01; 70(9):370-383. PubMed ID: 38832648 [Abstract] [Full Text] [Related]
20. Mechanisms of enhanced cellulosic bioethanol fermentation by co-cultivation of Clostridium and Thermoanaerobacter spp. He Q, Hemme CL, Jiang H, He Z, Zhou J. Bioresour Technol; 2011 Oct 01; 102(20):9586-92. PubMed ID: 21868218 [Abstract] [Full Text] [Related] Page: [Next] [New Search]