These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
378 related items for PubMed ID: 30001594
21. Comparative Biochemical Analysis of Cellulosomes Isolated from Clostridium clariflavum DSM 19732 and Clostridium thermocellum ATCC 27405 Grown on Plant Biomass. Shinoda S, Kurosaki M, Kokuzawa T, Hirano K, Takano H, Ueda K, Haruki M, Hirano N. Appl Biochem Biotechnol; 2019 Mar; 187(3):994-1010. PubMed ID: 30136170 [Abstract] [Full Text] [Related]
22. Increase in ethanol yield via elimination of lactate production in an ethanol-tolerant mutant of Clostridium thermocellum. Biswas R, Prabhu S, Lynd LR, Guss AM. PLoS One; 2014 Mar; 9(2):e86389. PubMed ID: 24516531 [Abstract] [Full Text] [Related]
23. Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum. Shao X, Raman B, Zhu M, Mielenz JR, Brown SD, Guss AM, Lynd LR. Appl Microbiol Biotechnol; 2011 Nov; 92(3):641-52. PubMed ID: 21874277 [Abstract] [Full Text] [Related]
24. Bioethanol production by a xylan fermenting thermophilic isolate Clostridium strain DBT-IOC-DC21. Singh N, Puri M, Tuli DK, Gupta RP, Barrow CJ, Mathur AS. Anaerobe; 2018 Jun; 51():89-98. PubMed ID: 29729318 [Abstract] [Full Text] [Related]
25. Cellulosic ethanol production via consolidated bioprocessing by a novel thermophilic anaerobic bacterium isolated from a Himalayan hot spring. Singh N, Mathur AS, Tuli DK, Gupta RP, Barrow CJ, Puri M. Biotechnol Biofuels; 2017 Jun; 10():73. PubMed ID: 28344648 [Abstract] [Full Text] [Related]
26. A kinetics modeling study on the inhibition of glucose on cellulosome of Clostridium thermocellum. Zhang P, Wang B, Xiao Q, Wu S. Bioresour Technol; 2015 Aug; 190():36-43. PubMed ID: 25919935 [Abstract] [Full Text] [Related]
27. Influence of initial cellulose concentration on the carbon flow distribution during batch fermentation by Clostridium thermocellum ATCC 27405. Islam R, Cicek N, Sparling R, Levin D. Appl Microbiol Biotechnol; 2009 Feb; 82(1):141-8. PubMed ID: 18998122 [Abstract] [Full Text] [Related]
28. Elimination of formate production in Clostridium thermocellum. Rydzak T, Lynd LR, Guss AM. J Ind Microbiol Biotechnol; 2015 Sep; 42(9):1263-72. PubMed ID: 26162629 [Abstract] [Full Text] [Related]
29. Continuous cellulosic bioethanol fermentation by cyclic fed-batch cocultivation. Jiang HL, He Q, He Z, Hemme CL, Wu L, Zhou J. Appl Environ Microbiol; 2013 Mar; 79(5):1580-9. PubMed ID: 23275517 [Abstract] [Full Text] [Related]
30. Metabolic control of Clostridium thermocellum via inhibition of hydrogenase activity and the glucose transport rate. Li HF, Knutson BL, Nokes SE, Lynn BC, Flythe MD. Appl Microbiol Biotechnol; 2012 Feb; 93(4):1777-84. PubMed ID: 22218768 [Abstract] [Full Text] [Related]
31. Isolation and characterization of two thermophilic cellulolytic strains of Clostridium thermocellum from a compost sample. Lv W, Yu Z. J Appl Microbiol; 2013 Apr; 114(4):1001-7. PubMed ID: 23279216 [Abstract] [Full Text] [Related]
32. Deletion of Type I glutamine synthetase deregulates nitrogen metabolism and increases ethanol production in Clostridium thermocellum. Rydzak T, Garcia D, Stevenson DM, Sladek M, Klingeman DM, Holwerda EK, Amador-Noguez D, Brown SD, Guss AM. Metab Eng; 2017 May; 41():182-191. PubMed ID: 28400329 [Abstract] [Full Text] [Related]
33. Consolidated bioprocessing of cellulose to isobutanol using Clostridium thermocellum. Lin PP, Mi L, Morioka AH, Yoshino KM, Konishi S, Xu SC, Papanek BA, Riley LA, Guss AM, Liao JC. Metab Eng; 2015 Sep; 31():44-52. PubMed ID: 26170002 [Abstract] [Full Text] [Related]
34. Characterization of enriched aerotolerant cellulose-degrading communities for biofuels production using differing selection pressures and inoculum sources. Wushke S, Levin DB, Cicek N, Sparling R. Can J Microbiol; 2013 Oct; 59(10):679-83. PubMed ID: 24102221 [Abstract] [Full Text] [Related]
35. Stoichiometric Assembly of the Cellulosome Generates Maximum Synergy for the Degradation of Crystalline Cellulose, as Revealed by In Vitro Reconstitution of the Clostridium thermocellum Cellulosome. Hirano K, Nihei S, Hasegawa H, Haruki M, Hirano N. Appl Environ Microbiol; 2015 Jul; 81(14):4756-66. PubMed ID: 25956772 [Abstract] [Full Text] [Related]
36. Ethanol Production by Thermophilic Bacteria: Fermentation of Cellulosic Substrates by Cocultures of Clostridium thermocellum and Clostridium thermohydrosulfuricum. Ng TK, Ben-Bassat A, Zeikus JG. Appl Environ Microbiol; 1981 Jun; 41(6):1337-43. PubMed ID: 16345787 [Abstract] [Full Text] [Related]
37. Cellulosomes localise on the surface of membrane vesicles from the cellulolytic bacterium Clostridium thermocellum. Ichikawa S, Ogawa S, Nishida A, Kobayashi Y, Kurosawa T, Karita S. FEMS Microbiol Lett; 2019 Jun 01; 366(12):. PubMed ID: 31260052 [Abstract] [Full Text] [Related]