These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
135 related items for PubMed ID: 3000434
1. Modulation of the receptor-coupled adenylate cyclase system in HeLa cells by sodium butyrate. Kassis S. Biochemistry; 1985 Sep 24; 24(20):5666-72. PubMed ID: 3000434 [Abstract] [Full Text] [Related]
2. Induction of catecholamine-responsive adenylate cyclase in HeLa cells by sodium butyrate. Evidence for a more efficient stimulatory regulatory component. Kassis S, Henneberry RC, Fishman PH. J Biol Chem; 1984 Apr 25; 259(8):4910-6. PubMed ID: 6325411 [Abstract] [Full Text] [Related]
3. Specificity of the functional interactions of the beta-adrenergic receptor and rhodopsin with guanine nucleotide regulatory proteins reconstituted in phospholipid vesicles. Cerione RA, Staniszewski C, Benovic JL, Lefkowitz RJ, Caron MG, Gierschik P, Somers R, Spiegel AM, Codina J, Birnbaumer L. J Biol Chem; 1985 Feb 10; 260(3):1493-500. PubMed ID: 2981858 [Abstract] [Full Text] [Related]
4. Properties of beta-adrenergic receptors in untreated and butyrate-treated Hela cells. Tallman JF, Smith CC, Henneberry RC. Biochim Biophys Acta; 1978 Jul 03; 541(3):288-300. PubMed ID: 208639 [Abstract] [Full Text] [Related]
5. Catecholamine-stimulated guanosine 5'-O-(3-thiotriphosphate) binding to the stimulatory GTP-binding protein of adenylate cyclase: kinetic analysis in reconstituted phospholipid vesicles. Asano T, Ross EM. Biochemistry; 1984 Nov 06; 23(23):5467-71. PubMed ID: 6095900 [Abstract] [Full Text] [Related]
6. Effects of ethanol in vitro on the beta adrenergic receptor-coupled adenylate cyclase system. Bode DC, Molinoff PB. J Pharmacol Exp Ther; 1988 Sep 06; 246(3):1040-7. PubMed ID: 2843625 [Abstract] [Full Text] [Related]
7. Mechanism of guanine nucleotide regulatory protein-mediated inhibition of adenylate cyclase. Studies with isolated subunits of transducin in a reconstituted system. Cerione RA, Staniszewski C, Gierschik P, Codina J, Somers RL, Birnbaumer L, Spiegel AM, Caron MG, Lefkowitz RJ. J Biol Chem; 1986 Jul 15; 261(20):9514-20. PubMed ID: 3013893 [Abstract] [Full Text] [Related]
8. Reconstitution of catecholamine-stimulated binding of guanosine 5'-O-(3-thiotriphosphate) to the stimulatory GTP-binding protein of adenylate cyclase. Asano T, Pedersen SE, Scott CW, Ross EM. Biochemistry; 1984 Nov 06; 23(23):5460-7. PubMed ID: 6095899 [Abstract] [Full Text] [Related]
9. Sodium regulation of hormone-sensitive adenylate cyclase. Jakobs KH, Minuth M, Aktories K. J Recept Res; 1984 Nov 06; 4(1-6):443-58. PubMed ID: 6098666 [Abstract] [Full Text] [Related]
10. Reduction of GTP activation of adenylate cyclase system by its coupling to hormone receptor. Lin MC, Lin C, Whitlock JP. J Biol Chem; 1979 Jun 10; 254(11):4684-8. PubMed ID: 86543 [Abstract] [Full Text] [Related]
11. Induction of functional beta-adrenergic receptors in rat aortic smooth muscle cells by sodium butyrate. Nambi P, Whitman MH, Schmidt DB, Heckman GD, Stassen FL, Crooke ST. Biochem Pharmacol; 1986 Nov 01; 35(21):3813-20. PubMed ID: 3022740 [Abstract] [Full Text] [Related]
12. Reduction in the activity of the stimulatory guanine nucleotide-binding protein in the myocardium of spontaneously hypertensive rats. Murakami T, Katada T, Yasuda H. J Mol Cell Cardiol; 1987 Feb 01; 19(2):199-208. PubMed ID: 3033251 [Abstract] [Full Text] [Related]
13. Phorbol ester induces desensitization of adenylate cyclase and phosphorylation of the beta-adrenergic receptor in turkey erythrocytes. Kelleher DJ, Pessin JE, Ruoho AE, Johnson GL. Proc Natl Acad Sci U S A; 1984 Jul 01; 81(14):4316-20. PubMed ID: 6087317 [Abstract] [Full Text] [Related]
14. Activation of the inhibitory GTP-binding protein of adenylate cyclase, Gi, by beta-adrenergic receptors in reconstituted phospholipid vesicles. Asano T, Katada T, Gilman AG, Ross EM. J Biol Chem; 1984 Aug 10; 259(15):9351-4. PubMed ID: 6146612 [Abstract] [Full Text] [Related]
15. Modulation of the beta-adrenergic receptor-coupled adenylate cyclase by chemical inducers of differentiation: effects on beta receptors and the inhibitory regulatory protein Gi. Kassis S, Sullivan M, Fishman PH. J Recept Res; 1988 Aug 10; 8(5):627-44. PubMed ID: 2455808 [Abstract] [Full Text] [Related]
16. Guanine nucleotides regulate beta-adrenergic activation of Na-H exchange independently of receptor coupling to Gs. Barber DL, Ganz MB. J Biol Chem; 1992 Oct 15; 267(29):20607-12. PubMed ID: 1328204 [Abstract] [Full Text] [Related]
17. Stimulatory and inhibitory regulation of calcium-activated potassium channels by guanine nucleotide-binding proteins. Kume H, Graziano MP, Kotlikoff MI. Proc Natl Acad Sci U S A; 1992 Nov 15; 89(22):11051-5. PubMed ID: 1438313 [Abstract] [Full Text] [Related]
18. Guanine nucleotide activation of adenylate cyclase in saponin permeabilized glioma cells. Rasenick MM, Kaplan RS. FEBS Lett; 1986 Oct 27; 207(2):296-301. PubMed ID: 3533631 [Abstract] [Full Text] [Related]
19. Functional activation of beta-adrenergic receptors by thiols in the presence or absence of agonists. Pedersen SE, Ross EM. J Biol Chem; 1985 Nov 15; 260(26):14150-7. PubMed ID: 2997196 [Abstract] [Full Text] [Related]
20. Reconstitution of a hormone-sensitive adenylate cyclase system. The pure beta-adrenergic receptor and guanine nucleotide regulatory protein confer hormone responsiveness on the resolved catalytic unit. Cerione RA, Sibley DR, Codina J, Benovic JL, Winslow J, Neer EJ, Birnbaumer L, Caron MG, Lefkowitz RJ. J Biol Chem; 1984 Aug 25; 259(16):9979-82. PubMed ID: 6088509 [Abstract] [Full Text] [Related] Page: [Next] [New Search]