These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


704 related items for PubMed ID: 30004671

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Efficient photoelectrochemical water oxidation over cobalt-phosphate (Co-Pi) catalyst modified BiVO4/1D-WO3 heterojunction electrodes.
    Pilli SK, Janarthanan R, Deutsch TG, Furtak TE, Brown LD, Turner JA, Herring AM.
    Phys Chem Chem Phys; 2013 Sep 21; 15(35):14723-8. PubMed ID: 23900229
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. All-Solution-Processed WO3/BiVO4 Core-Shell Nanorod Arrays for Highly Stable Photoanodes.
    Lee BR, Lee MG, Park H, Lee TH, Lee SA, Bhat SSM, Kim C, Lee S, Jang HW.
    ACS Appl Mater Interfaces; 2019 Jun 05; 11(22):20004-20012. PubMed ID: 31083922
    [Abstract] [Full Text] [Related]

  • 10. Insight into Charge Separation in WO3/BiVO4 Heterojunction for Solar Water Splitting.
    Chae SY, Lee CS, Jung H, Joo OS, Min BK, Kim JH, Hwang YJ.
    ACS Appl Mater Interfaces; 2017 Jun 14; 9(23):19780-19790. PubMed ID: 28530789
    [Abstract] [Full Text] [Related]

  • 11. Interfacial growth of the optimal BiVO4 nanoparticles onto self-assembled WO3 nanoplates for efficient photoelectrochemical water splitting.
    Kumbhar VS, Lee H, Lee J, Lee K.
    J Colloid Interface Sci; 2019 Dec 01; 557():478-487. PubMed ID: 31541917
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Boosting the Performance of BiVO4 Photoanodes by the Simultaneous Introduction of Oxygen Vacancies and Cocatalyst via Photoelectrodeposition.
    Sun Q, Ren K, Qi L.
    ACS Appl Mater Interfaces; 2022 Aug 24; 14(33):37833-37842. PubMed ID: 35957577
    [Abstract] [Full Text] [Related]

  • 15. Enhanced Photoelectrochemical Water Splitting with Er- and W-Codoped Bismuth Vanadate with WO3 Heterojunction-Based Two-Dimensional Photoelectrode.
    Prasad U, Prakash J, Gupta SK, Zuniga J, Mao Y, Azeredo B, Kannan ANM.
    ACS Appl Mater Interfaces; 2019 May 29; 11(21):19029-19039. PubMed ID: 31062583
    [Abstract] [Full Text] [Related]

  • 16. Two-step electrodeposition to fabricate the p-n heterojunction of a Cu2O/BiVO4 photoanode for the enhancement of photoelectrochemical water splitting.
    Bai S, Liu J, Cui M, Luo R, He J, Chen A.
    Dalton Trans; 2018 May 15; 47(19):6763-6771. PubMed ID: 29717319
    [Abstract] [Full Text] [Related]

  • 17. Multichannel Charge Transport of a BiVO4/(RGO/WO3)/W18O49 Three-Storey Anode for Greatly Enhanced Photoelectrochemical Efficiency.
    Zhang Z, Chen B, Baek M, Yong K.
    ACS Appl Mater Interfaces; 2018 Feb 21; 10(7):6218-6227. PubMed ID: 29377671
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. A 3D triple-deck photoanode with a strengthened structure integrality: enhanced photoelectrochemical water oxidation.
    Ma M, Shi X, Zhang K, Kwon S, Li P, Kim JK, Phu TT, Yi GR, Park JH.
    Nanoscale; 2016 Feb 14; 8(6):3474-81. PubMed ID: 26797394
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 36.