These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


251 related items for PubMed ID: 3000633

  • 21. Iron promoters of the Fenton reaction and lipid peroxidation can be released from haemoglobin by peroxides.
    Gutteridge JM.
    FEBS Lett; 1986 Jun 09; 201(2):291-5. PubMed ID: 2423372
    [Abstract] [Full Text] [Related]

  • 22. Hydroxyl radical production from hydrogen peroxide and enzymatically generated paraquat radicals: catalytic requirements and oxygen dependence.
    Winterbourn CC, Sutton HC.
    Arch Biochem Biophys; 1984 Nov 15; 235(1):116-26. PubMed ID: 6093705
    [Abstract] [Full Text] [Related]

  • 23. Alkaline phosphatase inactivation by mixed function oxidation systems.
    Mordente A, Miggiano GA, Martorana GE, Meucci E, Santini SA, Castelli A.
    Arch Biochem Biophys; 1987 Oct 15; 258(1):176-85. PubMed ID: 2821917
    [Abstract] [Full Text] [Related]

  • 24. Hydroxyl radical scavenging assay of phenolics and flavonoids with a modified cupric reducing antioxidant capacity (CUPRAC) method using catalase for hydrogen peroxide degradation.
    Ozyürek M, Bektaşoğlu B, Güçlü K, Apak R.
    Anal Chim Acta; 2008 Jun 02; 616(2):196-206. PubMed ID: 18482604
    [Abstract] [Full Text] [Related]

  • 25. Complex-formation and reduction of ferric iron by 2-oxo-4-thiomethylbutyric acid, and the production of hydroxyl radicals.
    Winston GW, Eibschutz OM, Strekas T, Cederbaum AI.
    Biochem J; 1986 Apr 15; 235(2):521-9. PubMed ID: 3741403
    [Abstract] [Full Text] [Related]

  • 26. Damage to the DNA bases in mammalian chromatin by hydrogen peroxide in the presence of ferric and cupric ions.
    Dizdaroglu M, Rao G, Halliwell B, Gajewski E.
    Arch Biochem Biophys; 1991 Mar 15; 285(2):317-24. PubMed ID: 1654771
    [Abstract] [Full Text] [Related]

  • 27. Hydrogen peroxide-mediated degradation of protein: different oxidation modes of copper- and iron-dependent hydroxyl radicals on the degradation of albumin.
    Kocha T, Yamaguchi M, Ohtaki H, Fukuda T, Aoyagi T.
    Biochim Biophys Acta; 1997 Feb 08; 1337(2):319-26. PubMed ID: 9048910
    [Abstract] [Full Text] [Related]

  • 28. The influence of pH on OH. scavenger inhibition of damage to deoxyribose by Fenton reaction.
    Tadolini B, Cabrini L.
    Mol Cell Biochem; 1990 May 10; 94(2):97-104. PubMed ID: 2165214
    [Abstract] [Full Text] [Related]

  • 29. Direct evidence of caeruloplasmin antioxidant properties.
    Atanasiu RL, Stea D, Mateescu MA, Vergely C, Dalloz F, Briot F, Maupoil V, Nadeau R, Rochette L.
    Mol Cell Biochem; 1998 Dec 10; 189(1-2):127-35. PubMed ID: 9879663
    [Abstract] [Full Text] [Related]

  • 30. Hydrogen peroxide formation and iron ion oxidoreduction linked to NADH oxidation in radish plasmalemma vesicles.
    Vianello A, Zancani M, Macrí F.
    Biochim Biophys Acta; 1990 Mar 30; 1023(1):19-24. PubMed ID: 2156562
    [Abstract] [Full Text] [Related]

  • 31. The generation of ferryl or hydroxyl radicals during interaction of haemproteins with hydrogen peroxide.
    Harel S, Kanner J.
    Free Radic Res Commun; 1988 Mar 30; 5(1):21-33. PubMed ID: 2853114
    [Abstract] [Full Text] [Related]

  • 32. Reduction of low molecular mass iron by reducing molecules present in plasma and the protective action of caeruloplasmin.
    Gutteridge JM.
    J Trace Elem Electrolytes Health Dis; 1991 Dec 30; 5(4):279-81. PubMed ID: 1822339
    [Abstract] [Full Text] [Related]

  • 33. Hydroxyl radical formation from the auto-reduction of a ferric citrate complex.
    Gutteridge JM.
    Free Radic Biol Med; 1991 Dec 30; 11(4):401-6. PubMed ID: 1665838
    [Abstract] [Full Text] [Related]

  • 34. Ferrous ion-EDTA-stimulated phospholipid peroxidation. A reaction changing from alkoxyl-radical- to hydroxyl-radical-dependent initiation.
    Gutteridge JM.
    Biochem J; 1984 Dec 15; 224(3):697-701. PubMed ID: 6441569
    [Abstract] [Full Text] [Related]

  • 35. Mitomycin C-induced deoxyribose degradation inhibited by superoxide dismutase. A reaction involving iron, hydroxyl and semiquinone radicals.
    Gutteridge JM, Quinlan GJ, Wilkins S.
    FEBS Lett; 1984 Feb 13; 167(1):37-41. PubMed ID: 6321237
    [Abstract] [Full Text] [Related]

  • 36. Deoxyribose degradation catalyzed by Fe(III)-EDTA: kinetic aspects and potential usefulness for submicromolar iron measurements.
    Hermes-Lima M, Wang EM, Schulman HM, Storey KB, Ponka P.
    Mol Cell Biochem; 1994 Aug 17; 137(1):65-73. PubMed ID: 7845380
    [Abstract] [Full Text] [Related]

  • 37. Role of catalase and hydroxyl radicals in the oxidation of methanol by rat liver microsomes.
    Cederbaum AI, Qureshi A.
    Biochem Pharmacol; 1982 Feb 01; 31(3):329-35. PubMed ID: 6280725
    [Abstract] [Full Text] [Related]

  • 38. Iron ion induced haemolysis: effect of caeruloplasmin, albumin and ascorbate (vitamin C).
    Løvstad RA.
    Int J Biochem; 1983 Feb 01; 15(8):1067-71. PubMed ID: 6617951
    [Abstract] [Full Text] [Related]

  • 39. Superoxide-dependent lipid peroxidation. Problems with the use of catalase as a specific probe for fenton-derived hydroxyl radicals.
    Gutteridge JM, Beard AP, Quinlan GJ.
    Biochem Biophys Res Commun; 1983 Dec 28; 117(3):901-7. PubMed ID: 6320819
    [Abstract] [Full Text] [Related]

  • 40. An investigation on lipoperoxidation mechanisms in boar spermatozoa.
    Comaschi V, Lindner L, Farruggia G, Gesmundo N, Colombi L, Masotti L.
    Biochem Biophys Res Commun; 1989 Feb 15; 158(3):769-75. PubMed ID: 2537636
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 13.