These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
251 related items for PubMed ID: 3000633
41. Requirement for iron for the production of hydroxyl radicals by rat liver quinone reductase. Dicker E, Cederbaum AI. J Pharmacol Exp Ther; 1993 Sep; 266(3):1282-90. PubMed ID: 7690400 [Abstract] [Full Text] [Related]
42. NADH-dependent generation of reactive oxygen species by microsomes in the presence of iron and redox cycling agents. Dicker E, Cederbaum AI. Biochem Pharmacol; 1991 Jul 15; 42(3):529-35. PubMed ID: 1650215 [Abstract] [Full Text] [Related]
43. L-carnosine (beta-alanyl-L-histidine) and carcinine (beta-alanylhistamine) act as natural antioxidants with hydroxyl-radical-scavenging and lipid-peroxidase activities. Babizhayev MA, Seguin MC, Gueyne J, Evstigneeva RP, Ageyeva EA, Zheltukhina GA. Biochem J; 1994 Dec 01; 304 ( Pt 2)(Pt 2):509-16. PubMed ID: 7998987 [Abstract] [Full Text] [Related]
44. Cobalt(II) ion as a promoter of hydroxyl radical and possible 'crypto-hydroxyl' radical formation under physiological conditions. Differential effects of hydroxyl radical scavengers. Moorhouse CP, Halliwell B, Grootveld M, Gutteridge JM. Biochim Biophys Acta; 1985 Dec 13; 843(3):261-8. PubMed ID: 2998477 [Abstract] [Full Text] [Related]
45. Free radical mechanism of oxidation of uroporphyrinogen in the presence of ferrous iron. Mukerji SK, Pimstone NR. Arch Biochem Biophys; 1990 Sep 13; 281(2):177-84. PubMed ID: 2168153 [Abstract] [Full Text] [Related]
46. Hydroxyl radical generation by the tetracycline antibiotics with free radical damage to DNA, lipids and carbohydrate in the presence of iron and copper salts. Quinlan GJ, Gutteridge JM. Free Radic Biol Med; 1988 Sep 13; 5(5-6):341-8. PubMed ID: 2855734 [Abstract] [Full Text] [Related]
48. Non-caeruloplasmin copper and ferroxidase activity in mammalian serum. Ferroxidase activity and phenanthroline-detectable copper in human serum in Wilson's disease. Evans PJ, Bomford A, Halliwell B. Free Radic Res Commun; 1989 Sep 13; 7(1):55-62. PubMed ID: 2806955 [Abstract] [Full Text] [Related]
49. Interaction of ferric complexes with rat liver nuclei to catalyze NADH-and NADPH-Dependent production of oxygen radicals. Kukiełka E, Puntarulo S, Cederbaum AI. Arch Biochem Biophys; 1989 Sep 13; 273(2):319-30. PubMed ID: 2774554 [Abstract] [Full Text] [Related]
52. The effect of hemoglobin, hematin, and iron on neutrophil inactivation in superoxide generating systems. Kim YM, Yamazaki I, Piette LH. Arch Biochem Biophys; 1994 Mar 13; 309(2):308-14. PubMed ID: 8135543 [Abstract] [Full Text] [Related]
53. Streptonigrin-induced deoxyribose degradation: inhibition by superoxide dismutase, hydroxyl radical scavengers and iron chelators. Gutteridge JM. Biochem Pharmacol; 1984 Oct 01; 33(19):3059-62. PubMed ID: 6091667 [Abstract] [Full Text] [Related]
54. Superoxide dismutase-like activities of copper(II) complexes tested in serum. Huber KR, Sridhar R, Griffith EH, Amma EL, Roberts J. Biochim Biophys Acta; 1987 Sep 24; 915(2):267-76. PubMed ID: 2820500 [Abstract] [Full Text] [Related]
55. Hydroxyl radical mediated demethylenation of (methylenedioxy)phenyl compounds. Kumagai Y, Lin LY, Schmitz DA, Cho AK. Chem Res Toxicol; 1991 Sep 24; 4(3):330-4. PubMed ID: 1680477 [Abstract] [Full Text] [Related]
56. NADPH- and NADH-dependent oxygen radical generation by rat liver nuclei in the presence of redox cycling agents and iron. Kukiełka E, Cederbaum AI. Arch Biochem Biophys; 1990 Dec 24; 283(2):326-33. PubMed ID: 2275546 [Abstract] [Full Text] [Related]
57. Ferric iron and superoxide ions are required for the killing of cultured hepatocytes by hydrogen peroxide. Evidence for the participation of hydroxyl radicals formed by an iron-catalyzed Haber-Weiss reaction. Starke PE, Farber JL. J Biol Chem; 1985 Aug 25; 260(18):10099-104. PubMed ID: 2991275 [Abstract] [Full Text] [Related]
58. NADH-dependent microsomal interaction with ferric complexes and production of reactive oxygen intermediates. Kukiełka E, Cederbaum AI. Arch Biochem Biophys; 1989 Dec 25; 275(2):540-50. PubMed ID: 2556968 [Abstract] [Full Text] [Related]
59. Promotion of glutathione-gamma-glutamyl transpeptidase-dependent lipid peroxidation by copper and ceruloplasmin: the requirement for iron and the effects of antioxidants and antioxidant enzymes. Glass GA, Stark AA. Environ Mol Mutagen; 1997 Dec 25; 29(1):73-80. PubMed ID: 9020310 [Abstract] [Full Text] [Related]
60. Caeruloplasmin: a plasma protein, enzyme, and antioxidant. Gutteridge JM. Ann Clin Biochem; 1978 Nov 25; 15(6):293-6. PubMed ID: 736489 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]