These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


370 related items for PubMed ID: 30010865

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Zinc absorption in Guatemalan schoolchildren fed normal or low-phytate maize.
    Mazariegos M, Hambidge KM, Krebs NF, Westcott JE, Lei S, Grunwald GK, Campos R, Barahona B, Raboy V, Solomons NW.
    Am J Clin Nutr; 2006 Jan; 83(1):59-64. PubMed ID: 16400050
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Usefulness of the dietary phytic acid/zinc molar ratio as an index of zinc bioavailability to rats and humans.
    Morris ER, Ellis R.
    Biol Trace Elem Res; 1989 Jan; 19(1-2):107-17. PubMed ID: 2484373
    [Abstract] [Full Text] [Related]

  • 27. Effect of dietary phytate/zinc molar ratio on growth and bone zinc response of rats fed semipurified diets.
    Morris ER, Ellis R.
    J Nutr; 1980 May; 110(5):1037-45. PubMed ID: 7373429
    [Abstract] [Full Text] [Related]

  • 28. Dietary molar ratios of phytate:zinc and millimolar ratios of phytate x calcium:zinc in South Koreans.
    Kwun IS, Kwon CS.
    Biol Trace Elem Res; 2000 May; 75(1-3):29-41. PubMed ID: 11051594
    [Abstract] [Full Text] [Related]

  • 29. Iron and zinc nutrition in the economically-developed world: a review.
    Lim KH, Riddell LJ, Nowson CA, Booth AO, Szymlek-Gay EA.
    Nutrients; 2013 Aug 13; 5(8):3184-211. PubMed ID: 23945676
    [Abstract] [Full Text] [Related]

  • 30. Effect of dietary phytate on zinc homeostasis in young and elderly Korean women.
    Kim J, Paik HY, Joung H, Woodhouse LR, Li S, King JC.
    J Am Coll Nutr; 2007 Feb 13; 26(1):1-9. PubMed ID: 17353577
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Factors that affect zinc bioavailability and losses in adult and elderly populations.
    Bel-Serrat S, Stammers AL, Warthon-Medina M, Moran VH, Iglesia-Altaba I, Hermoso M, Moreno LA, Lowe NM, EURRECA Network.
    Nutr Rev; 2014 May 13; 72(5):334-52. PubMed ID: 24739133
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Bioavailability of Micronutrients from Plant Foods: An Update.
    Platel K, Srinivasan K.
    Crit Rev Food Sci Nutr; 2016 Jul 26; 56(10):1608-19. PubMed ID: 25748063
    [Abstract] [Full Text] [Related]

  • 36. Improved extracellular phytase activity in Saccharomyces cerevisiae by modifications in the PHO system.
    Veide J, Andlid T.
    Int J Food Microbiol; 2006 Apr 15; 108(1):60-7. PubMed ID: 16476497
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Increased iron bioavailability from lactic-fermented vegetables is likely an effect of promoting the formation of ferric iron (Fe(3+)).
    Scheers N, Rossander-Hulthen L, Torsdottir I, Sandberg AS.
    Eur J Nutr; 2016 Feb 15; 55(1):373-82. PubMed ID: 25672527
    [Abstract] [Full Text] [Related]

  • 39. Phytate and zinc bioavailability.
    Wise A.
    Int J Food Sci Nutr; 1995 Feb 15; 46(1):53-63. PubMed ID: 7712343
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 19.