These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


161 related items for PubMed ID: 30013342

  • 1. Nanoporous diopside modulates biocompatibility, degradability and osteogenesis of bioactive scaffolds of gliadin-based composites for new bone formation.
    Ba Z, Chen Z, Huang Y, Feng D, Zhao Q, Zhu J, Wu D.
    Int J Nanomedicine; 2018; 13():3883-3896. PubMed ID: 30013342
    [Abstract] [Full Text] [Related]

  • 2. 3D-printed scaffolds of mesoporous bioglass/gliadin/polycaprolactone ternary composite for enhancement of compressive strength, degradability, cell responses and new bone tissue ingrowth.
    Zhang Y, Yu W, Ba Z, Cui S, Wei J, Li H.
    Int J Nanomedicine; 2018; 13():5433-5447. PubMed ID: 30271139
    [Abstract] [Full Text] [Related]

  • 3. Biocompatibility, degradability, bioactivity and osteogenesis of mesoporous/macroporous scaffolds of mesoporous diopside/poly(L-lactide) composite.
    Liu Z, Ji J, Tang S, Qian J, Yan Y, Yu B, Su J, Wei J.
    J R Soc Interface; 2015 Oct 06; 12(111):20150507. PubMed ID: 26378120
    [Abstract] [Full Text] [Related]

  • 4. In vitro Apatite Mineralization, Degradability, Cytocompatibility and in vivo New Bone Formation and Vascularization of Bioactive Scaffold of Polybutylene Succinate/Magnesium Phosphate/Wheat Protein Ternary Composite.
    Zhao Q, Tang H, Ren L, Wei J.
    Int J Nanomedicine; 2020 Oct 06; 15():7279-7295. PubMed ID: 33061381
    [Abstract] [Full Text] [Related]

  • 5. Degradability, bioactivity, and osteogenesis of biocomposite scaffolds of lithium-containing mesoporous bioglass and mPEG-PLGA-b-PLL copolymer.
    Cai Y, Guo L, Shen H, An X, Jiang H, Ji F, Niu Y.
    Int J Nanomedicine; 2015 Oct 06; 10():4125-36. PubMed ID: 26150718
    [Abstract] [Full Text] [Related]

  • 6. Macro-mesoporous composites containing PEEK and mesoporous diopside as bone implants: characterization, in vitro mineralization, cytocompatibility, and vascularization potential and osteogenesis in vivo.
    Cai L, Pan Y, Tang S, Li Q, Tang T, Zheng K, Boccaccini AR, Wei S, Wei J, Su J.
    J Mater Chem B; 2017 Nov 14; 5(42):8337-8352. PubMed ID: 32264503
    [Abstract] [Full Text] [Related]

  • 7. Influences of mesoporous magnesium calcium silicate on mineralization, degradability, cell responses, curcumin release from macro-mesoporous scaffolds of gliadin based biocomposites.
    Wang S, Gu Z, Wang Z, Chen X, Cao L, Cai L, Li Q, Wei J, Shin JW, Su J.
    Sci Rep; 2018 Jan 09; 8(1):174. PubMed ID: 29317753
    [Abstract] [Full Text] [Related]

  • 8. Degradability, biocompatibility, and osteogenesis of biocomposite scaffolds containing nano magnesium phosphate and wheat protein both in vitro and in vivo for bone regeneration.
    Xia Y, Zhou P, Wang F, Qiu C, Wang P, Zhang Y, Zhao L, Xu S.
    Int J Nanomedicine; 2016 Jan 09; 11():3435-49. PubMed ID: 27555766
    [Abstract] [Full Text] [Related]

  • 9. Biocompatibility and bioactivity of hardystonite-based nanocomposite scaffold for tissue engineering applications.
    Hamvar M, Bakhsheshi-Rad HR, Omidi M, Ismail AF, Aziz M, Berto F, Chen X.
    Biomed Phys Eng Express; 2020 Mar 25; 6(3):035011. PubMed ID: 33438656
    [Abstract] [Full Text] [Related]

  • 10. Effects of magnesium silicate on the mechanical properties, biocompatibility, bioactivity, degradability, and osteogenesis of poly(butylene succinate)-based composite scaffolds for bone repair.
    Wu Z, Zheng K, Zhang J, Tang T, Guo H, Boccaccini AR, Wei J.
    J Mater Chem B; 2016 Dec 28; 4(48):7974-7988. PubMed ID: 32263787
    [Abstract] [Full Text] [Related]

  • 11. Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration.
    Zhang J, Zhao S, Zhu Y, Huang Y, Zhu M, Tao C, Zhang C.
    Acta Biomater; 2014 May 28; 10(5):2269-81. PubMed ID: 24412143
    [Abstract] [Full Text] [Related]

  • 12. Three dimensional printed bioglass/gelatin/alginate composite scaffolds with promoted mechanical strength, biomineralization, cell responses and osteogenesis.
    Ye Q, Zhang Y, Dai K, Chen X, Read HM, Zeng L, Hang F.
    J Mater Sci Mater Med; 2020 Aug 20; 31(9):77. PubMed ID: 32816067
    [Abstract] [Full Text] [Related]

  • 13. Synergistic Effect of Carbon Nanotubes and Graphene on Diopside Scaffolds.
    Liu T, Wu P, Gao C, Feng P, Xiao T, Deng Y, Shuai C, Peng S.
    Biomed Res Int; 2016 Aug 20; 2016():7090635. PubMed ID: 27144173
    [Abstract] [Full Text] [Related]

  • 14. Biocompatibility and osteogenesis of biomimetic Bioglass-Collagen-Phosphatidylserine composite scaffolds for bone tissue engineering.
    Xu C, Su P, Chen X, Meng Y, Yu W, Xiang AP, Wang Y.
    Biomaterials; 2011 Feb 20; 32(4):1051-8. PubMed ID: 20980051
    [Abstract] [Full Text] [Related]

  • 15. Improving in vitro biocompatibility on biomimetic mineralized collagen bone materials modified with hyaluronic acid oligosaccharide.
    Li M, Zhang X, Jia W, Wang Q, Liu Y, Wang X, Wang C, Jiang J, Gu G, Guo Z, Chen Z.
    Mater Sci Eng C Mater Biol Appl; 2019 Nov 20; 104():110008. PubMed ID: 31499961
    [Abstract] [Full Text] [Related]

  • 16. Nano-pearl powder/chitosan-hyaluronic acid porous composite scaffold and preliminary study of its osteogenesis mechanism.
    Li X, Xu P, Cheng Y, Zhang W, Zheng B, Wang Q.
    Mater Sci Eng C Mater Biol Appl; 2020 Jun 20; 111():110749. PubMed ID: 32279810
    [Abstract] [Full Text] [Related]

  • 17. Evaluation of BMP-2 and VEGF loaded 3D printed hydroxyapatite composite scaffolds with enhanced osteogenic capacity in vitro and in vivo.
    Chen S, Shi Y, Zhang X, Ma J.
    Mater Sci Eng C Mater Biol Appl; 2020 Jul 20; 112():110893. PubMed ID: 32409051
    [Abstract] [Full Text] [Related]

  • 18. The Incorporation of Marine Coral Microparticles into Collagen-Based Scaffolds Promotes Osteogenesis of Human Mesenchymal Stromal Cells via Calcium Ion Signalling.
    Sheehy EJ, Lemoine M, Clarke D, Gonzalez Vazquez A, O'Brien FJ.
    Mar Drugs; 2020 Jan 23; 18(2):. PubMed ID: 31979233
    [Abstract] [Full Text] [Related]

  • 19. Three-Dimensional Printing of Biodegradable Piperazine-Based Polyurethane-Urea Scaffolds with Enhanced Osteogenesis for Bone Regeneration.
    Ma Y, Hu N, Liu J, Zhai X, Wu M, Hu C, Li L, Lai Y, Pan H, Lu WW, Zhang X, Luo Y, Ruan C.
    ACS Appl Mater Interfaces; 2019 Mar 06; 11(9):9415-9424. PubMed ID: 30698946
    [Abstract] [Full Text] [Related]

  • 20. Effects of the multiscale porosity of decellularized platelet-rich fibrin-loaded zinc-doped magnesium phosphate scaffolds in bone regeneration.
    Rath P, Mandal S, Das P, Sahoo SN, Mandal S, Ghosh D, Nandi SK, Roy M.
    J Mater Chem B; 2024 Jun 19; 12(24):5869-5883. PubMed ID: 38775079
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.