These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


168 related items for PubMed ID: 30015103

  • 41. Round Window Membrane Motion Induced by Bone Conduction Stimulation at Different Excitation Sites: Methodology of Measurement and Data Analysis in Cadaver Study.
    Kwacz M, Niemczyk K, Wysocki J, Lachowska M, Borkowski P, Małkowska M, Sokołowski J.
    Ear Hear; 2019; 40(6):1437-1444. PubMed ID: 31033633
    [Abstract] [Full Text] [Related]

  • 42. Reverse middle-ear transfer function in the guinea pig measured with cubic difference tones.
    Magnan P, Avan P, Dancer A, Smurzynski J, Probst R.
    Hear Res; 1997 May; 107(1-2):41-5. PubMed ID: 9165345
    [Abstract] [Full Text] [Related]

  • 43.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 44. Middle ear forward and reverse transmission in gerbil.
    Dong W, Olson ES.
    J Neurophysiol; 2006 May; 95(5):2951-61. PubMed ID: 16481455
    [Abstract] [Full Text] [Related]

  • 45. Experimental investigation of the effect of middle ear in bone conduction.
    Dobrev I, Farahmandi TS, Röösli C.
    Hear Res; 2020 Sep 15; 395():108041. PubMed ID: 32810722
    [Abstract] [Full Text] [Related]

  • 46. A Comparison of Intracochlear Pressures During Ipsilateral and Contralateral Stimulation With a Bone Conduction Implant.
    Mattingly JK, Banakis Hartl RM, Jenkins HA, Tollin DJ, Cass SP, Greene NT.
    Ear Hear; 2020 Sep 15; 41(2):312-322. PubMed ID: 31389846
    [Abstract] [Full Text] [Related]

  • 47. Real-time measurement of stapes motion and intracochlear pressure during blast exposure.
    Bien AG, Jiang S, Gan RZ.
    Hear Res; 2023 Mar 01; 429():108702. PubMed ID: 36669259
    [Abstract] [Full Text] [Related]

  • 48.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 49. Evidence of inner ear contribution in bone conduction in chinchilla.
    Chhan D, Röösli C, McKinnon ML, Rosowski JJ.
    Hear Res; 2013 Jul 01; 301():66-71. PubMed ID: 23211609
    [Abstract] [Full Text] [Related]

  • 50. Intracochlear pressure in cadaver heads under bone conduction and intracranial fluid stimulation.
    Dobrev I, Farahmandi T, Pfiffner F, Röösli C.
    Hear Res; 2022 Aug 01; 421():108506. PubMed ID: 35459531
    [Abstract] [Full Text] [Related]

  • 51. Effect of freezing and thawing on stapes-cochlear input impedance in human temporal bones.
    Ravicz ME, Merchant SN, Rosowski JJ.
    Hear Res; 2000 Dec 01; 150(1-2):215-24. PubMed ID: 11077205
    [Abstract] [Full Text] [Related]

  • 52. The mechanism of direct stimulation of the cochlea by vibrating the round window.
    Perez R, Adelman C, Chordekar S, de Jong MA, Sohmer H.
    J Basic Clin Physiol Pharmacol; 2014 Sep 01; 25(3):273-6. PubMed ID: 25046313
    [Abstract] [Full Text] [Related]

  • 53. Effect of freezing and embalming of human cadaveric whole head specimens on bone conduction.
    Graf L, Arnold A, Blache S, Honegger F, Müller-Gerbl M, Stieger C.
    Hear Res; 2023 Mar 01; 429():108700. PubMed ID: 36680872
    [Abstract] [Full Text] [Related]

  • 54. Middle-ear velocity transfer function, cochlear input immittance, and middle-ear efficiency in chinchilla.
    Ravicz ME, Rosowski JJ.
    J Acoust Soc Am; 2013 Oct 01; 134(4):2852-65. PubMed ID: 24116422
    [Abstract] [Full Text] [Related]

  • 55. Occluded insertion loss from intracochlear pressure measurements during acoustic shock wave exposure.
    Anderson DA, Argo TF, Greene NT.
    Hear Res; 2023 Feb 01; 428():108669. PubMed ID: 36565603
    [Abstract] [Full Text] [Related]

  • 56. Superior Canal Dehiscence Similarly Affects Cochlear Pressures in Temporal Bones and Audiograms in Patients.
    Cheng YS, Raufer S, Guan X, Halpin CF, Lee DJ, Nakajima HH.
    Ear Hear; 2020 Feb 01; 41(4):804-810. PubMed ID: 31688316
    [Abstract] [Full Text] [Related]

  • 57. Transmission of bone conducted sound - correlation between hearing perception and cochlear vibration.
    Eeg-Olofsson M, Stenfelt S, Taghavi H, Reinfeldt S, Håkansson B, Tengstrand T, Finizia C.
    Hear Res; 2013 Dec 01; 306():11-20. PubMed ID: 24047594
    [Abstract] [Full Text] [Related]

  • 58. Reverse transmission along the ossicular chain in gerbil.
    Dong W, Decraemer WF, Olson ES.
    J Assoc Res Otolaryngol; 2012 Aug 01; 13(4):447-59. PubMed ID: 22466074
    [Abstract] [Full Text] [Related]

  • 59. Evaluation of Round Window Stimulation Performance in Otosclerosis Using Finite Element Modeling.
    Yang S, Xu D, Liu X.
    Comput Math Methods Med; 2016 Aug 01; 2016():3603207. PubMed ID: 27034709
    [Abstract] [Full Text] [Related]

  • 60. Contribution of the flexible incudo-malleal joint to middle-ear sound transmission under static pressure loads.
    Warnholtz B, Schär M, Sackmann B, Lauxmann M, Chatzimichalis M, Prochazka L, Dobrev I, Huber AM, Sim JH.
    Hear Res; 2021 Jul 01; 406():108272. PubMed ID: 34038827
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.