These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
244 related items for PubMed ID: 30023601
1. pH-Regulated Synthesis of Trypsin-Templated Copper Nanoclusters with Blue and Yellow Fluorescent Emission. Feng J, Chen Y, Han Y, Liu J, Ma S, Zhang H, Chen X. ACS Omega; 2017 Dec 31; 2(12):9109-9117. PubMed ID: 30023601 [Abstract] [Full Text] [Related]
2. Glutathione-stabilized Cu nanocluster-based fluorescent probe for sensitive and selective detection of Hg2+ in water. Luo T, Zhang S, Wang Y, Wang M, Liao M, Kou X. Luminescence; 2017 Sep 31; 32(6):1092-1099. PubMed ID: 28417589 [Abstract] [Full Text] [Related]
3. Determination of the activity of alkaline phosphatase based on aggregation-induced quenching of the fluorescence of copper nanoclusters. Hu Y, He Y, Han Y, Ge Y, Song G, Zhou J. Mikrochim Acta; 2018 Dec 07; 186(1):5. PubMed ID: 30535645 [Abstract] [Full Text] [Related]
4. A facile synthesis of water-soluble copper nanoclusters as label-free fluorescent probes for rapid, selective and sensitive determination of alizarin red. Cai Z, Zhang Y, Zhao M, Bao J, Lv L, Li H. Spectrochim Acta A Mol Biomol Spectrosc; 2024 Nov 15; 321():124708. PubMed ID: 38936210 [Abstract] [Full Text] [Related]
5. Copper nanoclusters: an efficient fluorescence sensing platform for quinoline yellow. Sivasankaran U, Radecki J, Radecka H, Girish Kumar K. Luminescence; 2019 Mar 15; 34(2):243-248. PubMed ID: 30746849 [Abstract] [Full Text] [Related]
6. Water-soluble luminescent copper nanoclusters as a fluorescent quenching probe for the detection of rutin and quercetin based on the inner filter effect. Sasikumar T, Ilanchelian M. Luminescence; 2021 Mar 15; 36(2):326-335. PubMed ID: 32909349 [Abstract] [Full Text] [Related]
7. Polyethyleneimine-templated copper nanoclusters via ascorbic acid reduction approach as ferric ion sensor. Feng J, Ju Y, Liu J, Zhang H, Chen X. Anal Chim Acta; 2015 Jan 07; 854():153-60. PubMed ID: 25479879 [Abstract] [Full Text] [Related]
8. DNA-templated copper nanoclusters as a fluorescent probe for fluoride by using aluminum ions as a bridge. Pang J, Lu Y, Gao X, He L, Sun J, Yang F, Hao Z, Liu Y. Mikrochim Acta; 2019 May 18; 186(6):364. PubMed ID: 31104105 [Abstract] [Full Text] [Related]
9. Highly fluorescent copper nanoclusters for sensing and bioimaging. An Y, Ren Y, Bick M, Dudek A, Hong-Wang Waworuntu E, Tang J, Chen J, Chang B. Biosens Bioelectron; 2020 Apr 15; 154():112078. PubMed ID: 32056972 [Abstract] [Full Text] [Related]
10. One-Pot Aqueous Synthesis of Nucleoside-Templated Fluorescent Copper Nanoclusters and Their Application for Discrimination of Nucleosides. Wang Y, Chen T, Zhuang Q, Ni Y. ACS Appl Mater Interfaces; 2017 Sep 20; 9(37):32135-32141. PubMed ID: 28853550 [Abstract] [Full Text] [Related]
11. A Sensitive Fluorescence Sensor for Tetracycline Determination Based on Adenine Thymine-Rich Single-Stranded DNA-Templated Copper Nanoclusters. Wu NN, Chen LG, Wang HB. Appl Spectrosc; 2023 Oct 20; 77(10):1206-1213. PubMed ID: 37545405 [Abstract] [Full Text] [Related]
12. An Eco-Friendly Synthetic Approach for Copper Nanoclusters and Their Potential in Lead Ions Sensing and Biological Applications. Saleh SM, El-Sayed WA, El-Manawaty MA, Gassoumi M, Ali R. Biosensors (Basel); 2022 Mar 26; 12(4):. PubMed ID: 35448257 [Abstract] [Full Text] [Related]
13. Different fluorescence emitting copper nanoclusters protected by egg white and double-emission fluorescent probe for fast detection of ethanol. Li Y, He Y, Ge Y, Song G, Zhou J. Mikrochim Acta; 2021 Feb 25; 188(3):101. PubMed ID: 33630138 [Abstract] [Full Text] [Related]
14. PVP-templated highly luminescent copper nanoclusters for sensing trinitrophenol and living cell imaging. Li Y, Feng L, Yan W, Hussain I, Su L, Tan B. Nanoscale; 2019 Jan 17; 11(3):1286-1294. PubMed ID: 30603761 [Abstract] [Full Text] [Related]
15. Copper nanoclusters as probes for turn-on fluorescence sensing of L-lysine. Zhang M, Qiao J, Zhang S, Qi L. Talanta; 2018 May 15; 182():595-599. PubMed ID: 29501198 [Abstract] [Full Text] [Related]
16. Interfacial synthesis of polyethyleneimine-protected copper nanoclusters: Size-dependent tunable photoluminescence, pH sensor and bioimaging. Wang C, Yao Y, Song Q. Colloids Surf B Biointerfaces; 2016 Apr 01; 140():373-381. PubMed ID: 26774573 [Abstract] [Full Text] [Related]
17. Coal humus acid functionalized high stability fluorescent copper nanoclusters for tumor identification by sequential off-on-off monitoring tryptophan and Hg2. Li L, Chen L, Song Z, Wu W, Zhao W, Wei Y, Wang B, Zhang C. Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jun 05; 294():122557. PubMed ID: 36893677 [Abstract] [Full Text] [Related]
18. Transferrin-directed preparation of red-emitting copper nanoclusters for targeted imaging of transferrin receptor over-expressed cancer cells. Zhao T, He XW, Li WY, Zhang YK. J Mater Chem B; 2015 Mar 21; 3(11):2388-2394. PubMed ID: 32262069 [Abstract] [Full Text] [Related]
19. DNA Nanoribbon-Templated Self-Assembly of Ultrasmall Fluorescent Copper Nanoclusters with Enhanced Luminescence. Ouyang X, Wang M, Guo L, Cui C, Liu T, Ren Y, Zhao Y, Ge Z, Guo X, Xie G, Li J, Fan C, Wang L. Angew Chem Int Ed Engl; 2020 Jul 13; 59(29):11836-11844. PubMed ID: 32267600 [Abstract] [Full Text] [Related]
20. Fluorescent and visual assay of H2O2 and glucose based on a highly sensitive copper nanoclusters-Ce(III) fluoroprobe. Mei H, Ma Y, Wu H, Wang X. Anal Bioanal Chem; 2021 Mar 13; 413(8):2135-2146. PubMed ID: 33511458 [Abstract] [Full Text] [Related] Page: [Next] [New Search]