These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
239 related items for PubMed ID: 30024482
1. Effects of an Upper-Body Training Program Involving Resistance Exercise and High-Intensity Arm Cranking on Peak Handcycling Performance and Wheelchair Propulsion Efficiency in Able-Bodied Men. Chaikhot D, Reed K, Petroongrad W, Athanasiou F, van Kooten D, Hettinga FJ. J Strength Cond Res; 2020 Aug; 34(8):2267-2275. PubMed ID: 30024482 [Abstract] [Full Text] [Related]
2. Effects of a 6-Week Upper Extremity Low-Volume, High-Intensity Interval Training Program on Oxygen Uptake, Peak Power Output, and Total Exercise Time. Pinto N, Salassi JW, Donlin A, Schroeder J, Rozenek R. J Strength Cond Res; 2019 May; 33(5):1295-1304. PubMed ID: 28570491 [Abstract] [Full Text] [Related]
3. Effects of 7-week Resistance Training on Handcycle Performance in Able-bodied Males. Abonie US, Albada T, Morrien F, van der Woude L, Hettinga F. Int J Sports Med; 2022 Jan; 43(1):46-54. PubMed ID: 34380150 [Abstract] [Full Text] [Related]
4. Sex differences in wheelchair propulsion biomechanics and mechanical efficiency in novice young able-bodied adults. Chaikhot D, Taylor MJD, Hettinga FJ. Eur J Sport Sci; 2018 Jun; 18(5):650-658. PubMed ID: 29533156 [Abstract] [Full Text] [Related]
5. The Effect of High-Intensity Interval Cycling Sprints Subsequent to Arm-Curl Exercise on Upper-Body Muscle Strength and Hypertrophy. Kikuchi N, Yoshida S, Okuyama M, Nakazato K. J Strength Cond Res; 2016 Aug; 30(8):2318-23. PubMed ID: 26694501 [Abstract] [Full Text] [Related]
6. Mechanical efficiency and propulsion technique after 7 weeks of low-intensity wheelchair training. de Groot S, de Bruin M, Noomen SP, van der Woude LH. Clin Biomech (Bristol); 2008 May; 23(4):434-41. PubMed ID: 18077065 [Abstract] [Full Text] [Related]
7. Effect of a 7-week low intensity synchronous handcycling training programme on physical capacity in abled-bodied women. Abonie US, Monden P, van der Woude L, Hettinga FJ. J Sports Sci; 2021 Jul; 39(13):1472-1480. PubMed ID: 33530865 [Abstract] [Full Text] [Related]
8. Arm cranking versus wheelchair propulsion for testing aerobic fitness in children with spina bifida who are wheelchair dependent. Bloemen MA, de Groot JF, Backx FJ, Westerveld RA, Takken T. J Rehabil Med; 2015 May; 47(5):432-7. PubMed ID: 25882374 [Abstract] [Full Text] [Related]
9. Physiological Adaptations to High-Intensity Interval and Continuous Training in Kayak Athletes. Papandreou A, Philippou A, Zacharogiannis E, Maridaki M. J Strength Cond Res; 2020 Aug; 34(8):2258-2266. PubMed ID: 29952869 [Abstract] [Full Text] [Related]
10. Hand-rim forces and gross mechanical efficiency in asynchronous and synchronous wheelchair propulsion: a comparison. Lenton JP, van der Woude L, Fowler N, Nicholson G, Tolfrey K, Goosey-Tolfrey V. Int J Sports Med; 2014 Mar; 35(3):223-31. PubMed ID: 23945971 [Abstract] [Full Text] [Related]
11. Physical fitness training for wheelchair ambulation by the arm crank propulsion technique. Mukherjee G, Bhowmik P, Samanta A. Clin Rehabil; 2001 Apr; 15(2):125-32. PubMed ID: 11330757 [Abstract] [Full Text] [Related]
12. Low-Volume High-Intensity Interval Versus Continuous Endurance Training: Effects on Hematological and Cardiorespiratory System Adaptations in Professional Canoe Polo Athletes. Sheykhlouvand M, Gharaat M, Khalili E, Agha-Alinejad H, Rahmaninia F, Arazi H. J Strength Cond Res; 2018 Jul; 32(7):1852-1860. PubMed ID: 28700514 [Abstract] [Full Text] [Related]
13. Acute Cardiopulmonary and Metabolic Responses to High-Intensity Interval Training Protocols Using 60 s of Work and 60 s Recovery. Rozenek R, Salassi JW, Pinto NM, Fleming JD. J Strength Cond Res; 2016 Nov; 30(11):3014-3023. PubMed ID: 27028156 [Abstract] [Full Text] [Related]
14. Early motor learning changes in upper-limb dynamics and shoulder complex loading during handrim wheelchair propulsion. Vegter RJ, Hartog J, de Groot S, Lamoth CJ, Bekker MJ, van der Scheer JW, van der Woude LH, Veeger DH. J Neuroeng Rehabil; 2015 Mar 10; 12():26. PubMed ID: 25889389 [Abstract] [Full Text] [Related]
15. Wheelchair propulsion: effects of experience and push strategy on efficiency and perceived exertion. Lenton JP, Fowler NE, van der Woude L, Goosey-Tolfrey VL. Appl Physiol Nutr Metab; 2008 Oct 10; 33(5):870-9. PubMed ID: 18923561 [Abstract] [Full Text] [Related]
16. Handcycling: training effects of a specific dose of upper body endurance training in females. Hettinga FJ, Hoogwerf M, van der Woude LH. Eur J Appl Physiol; 2016 Jul 10; 116(7):1387-94. PubMed ID: 27222003 [Abstract] [Full Text] [Related]
17. Handcycling: different modes and gear ratios. van der Woude LH, Bosmans I, Bervoets B, Veeger HE. J Med Eng Technol; 2000 Jul 10; 24(6):242-9. PubMed ID: 11315650 [Abstract] [Full Text] [Related]
18. Short-term moderate intensive high volume training program provides aerobic endurance benefit in wheelchair basketball players. Skucas K, Pokvytyte V. J Sports Med Phys Fitness; 2017 Apr 10; 57(4):338-344. PubMed ID: 27015102 [Abstract] [Full Text] [Related]
19. Physical strain and mechanical efficiency in hubcrank and handrim wheelchair propulsion. van der Woude LH, van Kranen E, Ariëns G, Rozendal RH, Veeger HE. J Med Eng Technol; 1995 Apr 10; 19(4):123-31. PubMed ID: 8544207 [Abstract] [Full Text] [Related]
20. Relationship between rolling resistance, preferred speed, and manual wheelchair propulsion mechanics in non-disabled adults. Soleymani H, Cowan R. Disabil Rehabil Assist Technol; 2024 Jul 10; 19(5):1980-1991. PubMed ID: 37493253 [Abstract] [Full Text] [Related] Page: [Next] [New Search]