These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


135 related items for PubMed ID: 3002487

  • 1. Requirement of Ca2+ for the production and degradation of inositol 1,4,5-trisphosphate in macrophages.
    Kukita M, Hirata M, Koga T.
    Biochim Biophys Acta; 1986 Jan 23; 885(1):121-8. PubMed ID: 3002487
    [Abstract] [Full Text] [Related]

  • 2. The role of cytosolic free calcium in the generation of inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate in HL-60 cells. Differential effects of chemotactic peptide receptor stimulation at distinct Ca2+ levels.
    Lew PD, Monod A, Krause KH, Waldvogel FA, Biden TJ, Schlegel W.
    J Biol Chem; 1986 Oct 05; 261(28):13121-7. PubMed ID: 3489712
    [Abstract] [Full Text] [Related]

  • 3. Kinetic analysis of A23187-mediated polyphosphoinositide breakdown in rat cortical synaptosomes suggests that inositol bisphosphate does not arise primarily by degradation of inositol trisphosphate.
    Brammer M, Weaver K.
    J Neurochem; 1989 Aug 05; 53(2):399-407. PubMed ID: 2545817
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Carbachol causes rapid phosphodiesteratic cleavage of phosphatidylinositol 4,5-bisphosphate and accumulation of inositol phosphates in rabbit iris smooth muscle; prazosin inhibits noradrenaline- and ionophore A23187-stimulated accumulation of inositol phosphates.
    Akhtar RA, Abdel-Latif AA.
    Biochem J; 1984 Nov 15; 224(1):291-300. PubMed ID: 6095818
    [Abstract] [Full Text] [Related]

  • 7. Dependence on Ca2+ of the activities of phosphatidylinositol 4,5-bisphosphate phosphodiesterase and inositol 1,4,5-trisphosphate phosphatase in smooth muscles of the porcine coronary artery.
    Sasaguri T, Hirata M, Kuriyama H.
    Biochem J; 1985 Nov 01; 231(3):497-503. PubMed ID: 3000351
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. How far does phospholipase C activity depend on the cell calcium concentration? A study in intact cells.
    Renard D, Poggioli J, Berthon B, Claret M.
    Biochem J; 1987 Apr 15; 243(2):391-8. PubMed ID: 2820378
    [Abstract] [Full Text] [Related]

  • 10. Distinct occurrence of phosphatidylinositol 4,5-bisphosphate-induced Ca2+ release and inositol 1,4,5-triphosphate-induced release in ATP-dependent Ca2+-transporting platelet microsomes.
    Oho C, Takisawa H.
    J Biochem; 1986 Oct 15; 100(4):911-21. PubMed ID: 3029049
    [Abstract] [Full Text] [Related]

  • 11. The haemopoietic growth factors interleukin 3 and colony stimulating factor-1 stimulate proliferation but do not induce inositol lipid breakdown in murine bone-marrow-derived macrophages.
    Whetton AD, Monk PN, Consalvey SD, Downes CP.
    EMBO J; 1986 Dec 01; 5(12):3281-6. PubMed ID: 3493133
    [Abstract] [Full Text] [Related]

  • 12. Inositol trisphosphate, inositol phospholipid metabolism, and germinal vesicle breakdown in surf clam oocytes.
    Bloom TL, Szuts EZ, Eckberg WR.
    Dev Biol; 1988 Oct 01; 129(2):532-40. PubMed ID: 2843404
    [Abstract] [Full Text] [Related]

  • 13. Characterization of formylmethionyl-leucyl-phenylalanine stimulation of inositol trisphosphate accumulation in rabbit neutrophils.
    Bradford PG, Rubin RP.
    Mol Pharmacol; 1985 Jan 01; 27(1):74-8. PubMed ID: 2981403
    [Abstract] [Full Text] [Related]

  • 14. Possible physiological role of guanosine triphosphate and inositol 1,4,5-trisphosphate in Ca2+ release in macrophages stimulated with chemotactic peptide.
    Kimura Y, Hirata M, Hamachi T, Koga T.
    Biochem J; 1988 Jan 15; 249(2):531-6. PubMed ID: 3257693
    [Abstract] [Full Text] [Related]

  • 15. Pathway for inositol 1,3,4-trisphosphate and 1,4-bisphosphate metabolism.
    Inhorn RC, Bansal VS, Majerus PW.
    Proc Natl Acad Sci U S A; 1987 Apr 15; 84(8):2170-4. PubMed ID: 3031669
    [Abstract] [Full Text] [Related]

  • 16. The dependence on Ca2+ of phosphatidylinositol breakdown and enzyme secretion in rabbit neutrophils stimulated by formylmethionyl-leucylphenylalanine or ionomycin.
    Cockcroft S, Bennett JP, Gomperts BD.
    Biochem J; 1981 Dec 15; 200(3):501-8. PubMed ID: 7342966
    [Abstract] [Full Text] [Related]

  • 17. Inositol 1,4,5-trisphosphate activates pharmacomechanical coupling in smooth muscle of the rabbit mesenteric artery.
    Hashimoto T, Hirata M, Itoh T, Kanmura Y, Kuriyama H.
    J Physiol; 1986 Jan 15; 370():605-18. PubMed ID: 3007748
    [Abstract] [Full Text] [Related]

  • 18. Inhibition by islet-activating protein of a chemotactic peptide-induced early breakdown of inositol phospholipids and Ca2+ mobilization in guinea pig neutrophils.
    Ohta H, Okajima F, Ui M.
    J Biol Chem; 1985 Dec 15; 260(29):15771-80. PubMed ID: 2999136
    [Abstract] [Full Text] [Related]

  • 19. Secretagogue-induced phosphoinositide metabolism in human leucocytes.
    Dougherty RW, Godfrey PP, Hoyle PC, Putney JW, Freer RJ.
    Biochem J; 1984 Sep 01; 222(2):307-14. PubMed ID: 6089766
    [Abstract] [Full Text] [Related]

  • 20. Divalent cation regulation of phosphoinositide metabolism. Naturally occurring B lymphoblasts contain a Mg2(+)-regulated phosphatidylinositol-specific phospholipase C.
    Chien MM, Cambier JC.
    J Biol Chem; 1990 Jun 05; 265(16):9201-7. PubMed ID: 2160965
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.