These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
412 related items for PubMed ID: 30029031
1. Polymeric electrospun scaffolds for bone morphogenetic protein 2 delivery in bone tissue engineering. Aragón J, Salerno S, De Bartolo L, Irusta S, Mendoza G. J Colloid Interface Sci; 2018 Dec 01; 531():126-137. PubMed ID: 30029031 [Abstract] [Full Text] [Related]
2. Design, fabrication and in vitro evaluation of a novel polymer-hydrogel hybrid scaffold for bone tissue engineering. Igwe JC, Mikael PE, Nukavarapu SP. J Tissue Eng Regen Med; 2014 Feb 01; 8(2):131-42. PubMed ID: 22689304 [Abstract] [Full Text] [Related]
3. Culturing primary human osteoblasts on electrospun poly(lactic-co-glycolic acid) and poly(lactic-co-glycolic acid)/nanohydroxyapatite scaffolds for bone tissue engineering. Li M, Liu W, Sun J, Xianyu Y, Wang J, Zhang W, Zheng W, Huang D, Di S, Long YZ, Jiang X. ACS Appl Mater Interfaces; 2013 Jul 10; 5(13):5921-6. PubMed ID: 23790233 [Abstract] [Full Text] [Related]
4. A dual-application poly (dl-lactic-co-glycolic) acid (PLGA)-chitosan composite scaffold for potential use in bone tissue engineering. Boukari Y, Qutachi O, Scurr DJ, Morris AP, Doughty SW, Billa N. J Biomater Sci Polym Ed; 2017 Nov 10; 28(16):1966-1983. PubMed ID: 28777694 [Abstract] [Full Text] [Related]
6. Triple PLGA/PCL Scaffold Modification Including Silver Impregnation, Collagen Coating, and Electrospinning Significantly Improve Biocompatibility, Antimicrobial, and Osteogenic Properties for Orofacial Tissue Regeneration. Qian Y, Zhou X, Zhang F, Diekwisch TGH, Luan X, Yang J. ACS Appl Mater Interfaces; 2019 Oct 16; 11(41):37381-37396. PubMed ID: 31517483 [Abstract] [Full Text] [Related]
7. Poly-3-hydroxybutyrate-co-3-hydroxyvalerate containing scaffolds and their integration with osteoblasts as a model for bone tissue engineering. Zhang S, Prabhakaran MP, Qin X, Ramakrishna S. J Biomater Appl; 2015 May 16; 29(10):1394-406. PubMed ID: 25592285 [Abstract] [Full Text] [Related]
8. Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly(L-lactic-co-glycolic acid) scaffold. Jeon O, Song SJ, Kang SW, Putnam AJ, Kim BS. Biomaterials; 2007 Jun 16; 28(17):2763-71. PubMed ID: 17350678 [Abstract] [Full Text] [Related]
9. Development of an osteoconductive PCL-PDIPF-hydroxyapatite composite scaffold for bone tissue engineering. Fernandez JM, Molinuevo MS, Cortizo MS, Cortizo AM. J Tissue Eng Regen Med; 2011 Jun 16; 5(6):e126-35. PubMed ID: 21312338 [Abstract] [Full Text] [Related]
10. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering. Wang J, Yu X. Acta Biomater; 2010 Aug 16; 6(8):3004-12. PubMed ID: 20144749 [Abstract] [Full Text] [Related]
11. Mechanical properties and dual drug delivery application of poly(lactic-co-glycolic acid) scaffolds fabricated with a poly(β-amino ester) porogen. Clark A, Milbrandt TA, Hilt JZ, Puleo DA. Acta Biomater; 2014 May 16; 10(5):2125-32. PubMed ID: 24424269 [Abstract] [Full Text] [Related]
12. Fabrication of core-sheath structured fibers for model drug release and tissue engineering by emulsion electrospinning. Wei K, Li Y, Mugishima H, Teramoto A, Abe K. Biotechnol J; 2012 May 16; 7(5):677-85. PubMed ID: 22125296 [Abstract] [Full Text] [Related]
13. Laser-treated electrospun fibers loaded with nano-hydroxyapatite for bone tissue engineering. Aragon J, Navascues N, Mendoza G, Irusta S. Int J Pharm; 2017 Jun 15; 525(1):112-122. PubMed ID: 28412451 [Abstract] [Full Text] [Related]
14. In vitro and in vivo evaluation of bone formation using solid freeform fabrication-based bone morphogenic protein-2 releasing PCL/PLGA scaffolds. Kim TH, Yun YP, Park YE, Lee SH, Yong W, Kundu J, Jung JW, Shim JH, Cho DW, Kim SE, Song HR. Biomed Mater; 2014 Apr 15; 9(2):025008. PubMed ID: 24518200 [Abstract] [Full Text] [Related]
15. Three-dimensional printing of rhBMP-2-loaded scaffolds with long-term delivery for enhanced bone regeneration in a rabbit diaphyseal defect. Shim JH, Kim SE, Park JY, Kundu J, Kim SW, Kang SS, Cho DW. Tissue Eng Part A; 2014 Jul 15; 20(13-14):1980-92. PubMed ID: 24517081 [Abstract] [Full Text] [Related]
16. Novel 3D scaffold with enhanced physical and cell response properties for bone tissue regeneration, fabricated by patterned electrospinning/electrospraying. Hejazi F, Mirzadeh H. J Mater Sci Mater Med; 2016 Sep 15; 27(9):143. PubMed ID: 27550014 [Abstract] [Full Text] [Related]
17. Influence of highly porous electrospun PLGA/PCL/nHA fibrous scaffolds on the differentiation of tooth bud cells in vitro. Cai X, Ten Hoopen S, Zhang W, Yi C, Yang W, Yang F, Jansen JA, Walboomers XF, Yelick PC. J Biomed Mater Res A; 2017 Sep 15; 105(9):2597-2607. PubMed ID: 28544201 [Abstract] [Full Text] [Related]
18. Mesoporous bioactive glass surface modified poly(lactic-co-glycolic acid) electrospun fibrous scaffold for bone regeneration. Chen S, Jian Z, Huang L, Xu W, Liu S, Song D, Wan Z, Vaughn A, Zhan R, Zhang C, Wu S, Hu M, Li J. Int J Nanomedicine; 2015 Sep 15; 10():3815-27. PubMed ID: 26082632 [Abstract] [Full Text] [Related]
19. Fabrication of polycaprolactone-silanated β-tricalcium phosphate-heparan sulfate scaffolds for spinal fusion applications. Bhakta G, Ekaputra AK, Rai B, Abbah SA, Tan TC, Le BQ, Chatterjea A, Hu T, Lin T, Arafat MT, van Wijnen AJ, Goh J, Nurcombe V, Bhakoo K, Birch W, Xu L, Gibson I, Wong HK, Cool SM. Spine J; 2018 May 15; 18(5):818-830. PubMed ID: 29269312 [Abstract] [Full Text] [Related]
20. Influence of VEGF/BMP-2 on the proliferation and osteogenetic differentiation of rat bone mesenchymal stem cells on PLGA/gelatin composite scaffold. An G, Zhang WB, Ma DK, Lu B, Wei GJ, Guang Y, Ru CH, Wang YS. Eur Rev Med Pharmacol Sci; 2017 May 15; 21(10):2316-2328. PubMed ID: 28617560 [Abstract] [Full Text] [Related] Page: [Next] [New Search]