These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
373 related items for PubMed ID: 30031053
1. Genomic and transcriptomic analyses of HD-Zip family transcription factors and their responses to abiotic stress in tea plant (Camellia sinensis). Shen W, Li H, Teng R, Wang Y, Wang W, Zhuang J. Genomics; 2019 Sep; 111(5):1142-1151. PubMed ID: 30031053 [Abstract] [Full Text] [Related]
2. Comprehensive characterization and RNA-Seq profiling of the HD-Zip transcription factor family in soybean (Glycine max) during dehydration and salt stress. Belamkar V, Weeks NT, Bharti AK, Farmer AD, Graham MA, Cannon SB. BMC Genomics; 2014 Nov 03; 15():950. PubMed ID: 25362847 [Abstract] [Full Text] [Related]
3. Genome-wide characterization and expression analysis of the HD-Zip gene family in response to drought and salinity stresses in sesame. Wei M, Liu A, Zhang Y, Zhou Y, Li D, Dossa K, Zhou R, Zhang X, You J. BMC Genomics; 2019 Oct 16; 20(1):748. PubMed ID: 31619177 [Abstract] [Full Text] [Related]
4. Genome-wide identification of WRKY family genes and their response to abiotic stresses in tea plant (Camellia sinensis). Wang P, Yue C, Chen D, Zheng Y, Zhang Q, Yang J, Ye N. Genes Genomics; 2019 Jan 16; 41(1):17-33. PubMed ID: 30238224 [Abstract] [Full Text] [Related]
5. Transcriptome-Wide Identification and Expression Analysis of the NAC Gene Family in Tea Plant [Camellia sinensis (L.) O. Kuntze]. Wang YX, Liu ZW, Wu ZJ, Li H, Zhuang J. PLoS One; 2016 Jan 16; 11(11):e0166727. PubMed ID: 27855193 [Abstract] [Full Text] [Related]
6. Genome-Wide Identification and Expression Analysis of HD-ZIP I Gene Subfamily in Nicotiana tabacum. Li Y, Bai B, Wen F, Zhao M, Xia Q, Yang DH, Wang G. Genes (Basel); 2019 Jul 30; 10(8):. PubMed ID: 31366162 [Abstract] [Full Text] [Related]
7. Isolation and expression analysis of 18 CsbZIP genes implicated in abiotic stress responses in the tea plant (Camellia sinensis). Cao H, Wang L, Yue C, Hao X, Wang X, Yang Y. Plant Physiol Biochem; 2015 Dec 30; 97():432-42. PubMed ID: 26555901 [Abstract] [Full Text] [Related]
8. Plant transcription factors from the homeodomain-leucine zipper family I. Role in development and stress responses. Perotti MF, Ribone PA, Chan RL. IUBMB Life; 2017 May 30; 69(5):280-289. PubMed ID: 28337836 [Abstract] [Full Text] [Related]
9. [Biological functions of HD-Zip transcription factors]. Wang H, Li GB, Zhang DY, Lin J, Sheng BL, Han JL, Chang YH. Yi Chuan; 2013 Oct 30; 35(10):1179-88. PubMed ID: 24459891 [Abstract] [Full Text] [Related]
10. Identification and characterization of stress responsive homeodomain leucine zipper transcription factors in Medicago truncatula. Li X, Hou Y, Zhang F, Li M, Yi F, Kang J, Yang Q, Long R. Mol Biol Rep; 2022 May 30; 49(5):3569-3581. PubMed ID: 35118569 [Abstract] [Full Text] [Related]
11. Identification and expression profiling of the auxin response factors (ARFs) in the tea plant (Camellia sinensis (L.) O. Kuntze) under various abiotic stresses. Xu YX, Mao J, Chen W, Qian TT, Liu SC, Hao WJ, Li CF, Chen L. Plant Physiol Biochem; 2016 Jan 30; 98():46-56. PubMed ID: 26637949 [Abstract] [Full Text] [Related]
12. Role of Homeodomain leucine zipper (HD-Zip) IV transcription factors in plant development and plant protection from deleterious environmental factors. Chew W, Hrmova M, Lopato S. Int J Mol Sci; 2013 Apr 12; 14(4):8122-47. PubMed ID: 23584027 [Abstract] [Full Text] [Related]
13. Developmental processes and responses to hormonal stimuli in tea plant (Camellia sinensis) leaves are controlled by GRF and GIF gene families. Wu ZJ, Wang WL, Zhuang J. Funct Integr Genomics; 2017 Sep 12; 17(5):503-512. PubMed ID: 28236273 [Abstract] [Full Text] [Related]
14. Transcriptome-wide identification of Camellia sinensis WRKY transcription factors in response to temperature stress. Wu ZJ, Li XH, Liu ZW, Li H, Wang YX, Zhuang J. Mol Genet Genomics; 2016 Feb 12; 291(1):255-69. PubMed ID: 26308611 [Abstract] [Full Text] [Related]
15. Molecular interactions of the γ-clade homeodomain-leucine zipper class I transcription factors during the wheat response to water deficit. Harris JC, Sornaraj P, Taylor M, Bazanova N, Baumann U, Lovell B, Langridge P, Lopato S, Hrmova M. Plant Mol Biol; 2016 Mar 12; 90(4-5):435-52. PubMed ID: 26803501 [Abstract] [Full Text] [Related]
16. Genome-wide identification and expression profile of homeodomain-leucine zipper Class I gene family in Cucumis sativus. Liu W, Fu R, Li Q, Li J, Wang L, Ren Z. Gene; 2013 Dec 01; 531(2):279-87. PubMed ID: 24013079 [Abstract] [Full Text] [Related]
17. Comprehensive bioinformation analysis of homeodomain-leucine zipper gene family and expression pattern of HD-Zip I under abiotic stress in Salix suchowensis. Wang Y, Wang H, Yu C, Yan X, Chu J, Jiang B, Zhu J. BMC Genomics; 2024 Feb 15; 25(1):182. PubMed ID: 38360569 [Abstract] [Full Text] [Related]
18. Characterization of wheat homeodomain-leucine zipper family genes and functional analysis of TaHDZ5-6A in drought tolerance in transgenic Arabidopsis. Li S, Chen N, Li F, Mei F, Wang Z, Cheng X, Kang Z, Mao H. BMC Plant Biol; 2020 Jan 31; 20(1):50. PubMed ID: 32005165 [Abstract] [Full Text] [Related]
20. Structure and function of homodomain-leucine zipper (HD-Zip) proteins. Elhiti M, Stasolla C. Plant Signal Behav; 2009 Feb 31; 4(2):86-8. PubMed ID: 19649178 [Abstract] [Full Text] [Related] Page: [Next] [New Search]