These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


234 related items for PubMed ID: 30033262

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Fabrication and in-vitro biocompatibility of freeze-dried CTS-nHA and CTS-nBG scaffolds for bone regeneration applications.
    Kumar P, Saini M, Dehiya BS, Umar A, Sindhu A, Mohammed H, Al-Hadeethi Y, Guo Z.
    Int J Biol Macromol; 2020 Apr 15; 149():1-10. PubMed ID: 31923516
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Nano-composite of silk fibroin-chitosan/Nano ZrO2 for tissue engineering applications: fabrication and morphology.
    Teimouri A, Ebrahimi R, Emadi R, Beni BH, Chermahini AN.
    Int J Biol Macromol; 2015 May 15; 76():292-302. PubMed ID: 25709014
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Degradation behavior and compatibility of micro, nanoHA/chitosan scaffolds with interconnected spherical macropores.
    Ruixin L, Cheng X, Yingjie L, Hao L, Caihong S, Weihua S, Weining A, Yinghai Y, Xiaoli Q, Yunqiang X, Xizheng Z, Hui L.
    Int J Biol Macromol; 2017 Oct 15; 103():385-394. PubMed ID: 28366859
    [Abstract] [Full Text] [Related]

  • 15. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering.
    Sharma C, Dinda AK, Potdar PD, Chou CF, Mishra NC.
    Mater Sci Eng C Mater Biol Appl; 2016 Jul 01; 64():416-427. PubMed ID: 27127072
    [Abstract] [Full Text] [Related]

  • 16. Nano-scale characterization of nano-hydroxyapatite incorporated chitosan particles for bone repair.
    Gaihre B, Uswatta S, Jayasuriya AC.
    Colloids Surf B Biointerfaces; 2018 May 01; 165():158-164. PubMed ID: 29477936
    [Abstract] [Full Text] [Related]

  • 17. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength.
    Maji K, Dasgupta S, Kundu B, Bissoyi A.
    J Biomater Sci Polym Ed; 2015 May 01; 26(16):1190-209. PubMed ID: 26335156
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Preparation of chitosan/silk fibroin/hydroxyapatite porous scaffold and its characteristics in comparison to bi-component scaffolds.
    Qi XN, Mou ZL, Zhang J, Zhang ZQ.
    J Biomed Mater Res A; 2014 Feb 01; 102(2):366-72. PubMed ID: 23533149
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.