These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
88 related items for PubMed ID: 3003336
1. Nonbactericidal approach to reduce colonization of plaque microflora on teeth in vitro and in vivo. Gaffar A, Coleman EJ, Esposito A, Niles H, Gibbons RJ. J Pharm Sci; 1985 Nov; 74(11):1228-32. PubMed ID: 3003336 [Abstract] [Full Text] [Related]
2. Influence of growth medium on adsorption of Streptococcus mutans, Actinomyces viscosus, and Actinomyces naeslundii to saliva-treated hydroxyapatite surfaces. Peros WJ, Gibbons RJ. Infect Immun; 1981 Apr; 32(1):111-7. PubMed ID: 7216480 [Abstract] [Full Text] [Related]
3. Adsorption of glucosyltransferase to saliva coated hydroxyapatite. Possible mechanism for sucrose dependent bacterial colonization of teeth. Rŏlla G, Ciardi JE, Schultz SA. Scand J Dent Res; 1983 Apr; 91(2):112-7. PubMed ID: 6304864 [Abstract] [Full Text] [Related]
4. Saliva-promoted adhesion of Streptococcus mutans MT8148 associates with dental plaque and caries experience. Shimotoyodome A, Kobayashi H, Tokimitsu I, Hase T, Inoue T, Matsukubo T, Takaesu Y. Caries Res; 2007 Apr; 41(3):212-8. PubMed ID: 17426402 [Abstract] [Full Text] [Related]
5. Effect of microbial interaction on the colonization rate of Actinomyces viscosus or Streptococcus mutans in the dental plaque of rats. Beckers HJ, van der Hoeven JS. Infect Immun; 1982 Oct; 38(1):8-13. PubMed ID: 7141698 [Abstract] [Full Text] [Related]
6. Influence of cranberry proanthocyanidins on formation of biofilms by Streptococcus mutans on saliva-coated apatitic surface and on dental caries development in vivo. Koo H, Duarte S, Murata RM, Scott-Anne K, Gregoire S, Watson GE, Singh AP, Vorsa N. Caries Res; 2010 Oct; 44(2):116-26. PubMed ID: 20234135 [Abstract] [Full Text] [Related]
7. Long-term antiplaque, anticalculus, and antigingivitis effects of benzethonium/polymer complex in beagle dogs. Gaffar A, Solis-Gaffar MC, Tavss E, Marcussen HW, Rustogi KN. J Dent Res; 1981 Nov; 60(11):1897-1903. PubMed ID: 6945329 [Abstract] [Full Text] [Related]
8. The role of fructans on dental biofilm formation by Streptococcus sobrinus, Streptococcus mutans, Streptococcus gordonii and Actinomyces viscosus. Rozen R, Bachrach G, Bronshteyn M, Gedalia I, Steinberg D. FEMS Microbiol Lett; 2001 Feb 20; 195(2):205-10. PubMed ID: 11179653 [Abstract] [Full Text] [Related]
9. Effects of sustained-release chlorhexidine acetate on the human dental plaque flora. Schaeken MJ, De Haan P. J Dent Res; 1989 Feb 20; 68(2):119-23. PubMed ID: 2918132 [Abstract] [Full Text] [Related]
10. Adsorption of saliva-coated and plain streptococcal cells to the surfaces of hydroxyapatite beads. Tanaka H, Ebara S, Otsuka K, Hayashi K. Arch Oral Biol; 1996 May 20; 41(5):505-8. PubMed ID: 8809314 [Abstract] [Full Text] [Related]
11. Interactions of delmopinol with constituents of experimental pellicle. Steinberg D, Beeman D, Bowen WH. J Dent Res; 1992 Nov 20; 71(11):1797-802. PubMed ID: 1383304 [Abstract] [Full Text] [Related]
12. Reduction of Streptococcus mutans adherence and dental biofilm formation by surface treatment with phosphorylated polyethylene glycol. Shimotoyodome A, Koudate T, Kobayashi H, Nakamura J, Tokimitsu I, Hase T, Inoue T, Matsukubo T, Takaesu Y. Antimicrob Agents Chemother; 2007 Oct 20; 51(10):3634-41. PubMed ID: 17646419 [Abstract] [Full Text] [Related]
13. Growth of oral Streptococcus species and Actinomyces viscosus in human saliva. de Jong MH, van der Hoeven JS, van OS JH, Olijve JH. Appl Environ Microbiol; 1984 May 20; 47(5):901-4. PubMed ID: 6742834 [Abstract] [Full Text] [Related]
14. Effects of antibacterial microenvironment on in vitro plaque formation of Streptococcus mutans as observed by scanning electron microscopy. Merkle HP, Higuchi WI. Arzneimittelforschung; 1980 May 20; 30(11):1841-6. PubMed ID: 7192989 [Abstract] [Full Text] [Related]
15. Enzymatic modification of bacterial receptors on saliva-treated hydroxyapatite surfaces. Gibbons RJ, Etherden I. Infect Immun; 1982 Apr 20; 36(1):52-8. PubMed ID: 6281193 [Abstract] [Full Text] [Related]
16. Tetracycline and its derivatives strongly bind to and are released from the tooth surface in active form. Baker PJ, Evans RT, Coburn RA, Genco RJ. J Periodontol; 1983 Oct 20; 54(10):580-5. PubMed ID: 6580410 [Abstract] [Full Text] [Related]
17. Adherence of Actinomyces viscosus T14V and T14AV to hydroxyapatite surfaces in vitro and human teeth in vivo. Wheeler TT, Clark WB, Birdsell DC. Infect Immun; 1979 Sep 20; 25(3):1066-74. PubMed ID: 500185 [Abstract] [Full Text] [Related]
18. Utilization of hydroxyapatite adsorbable salivary proteins as growth substrates for plaque-forming oral streptococci. Cowman RA, Baron SJ, Fitzgerald RJ. J Dent Res; 1981 Oct 20; 60(10):1803-8. PubMed ID: 6268674 [Abstract] [Full Text] [Related]
19. Inhibition of Streptococcus mutans adsorption to hydroxyapatite by low-molecular-weight chitosans. Tarsi R, Muzzarelli RA, Guzmán CA, Pruzzo C. J Dent Res; 1997 Feb 20; 76(2):665-72. PubMed ID: 9062560 [Abstract] [Full Text] [Related]
20. Compounds which affect the adherence of Streptococcus sanguis and Streptococcus mutans to hydroxyapatite. Liljemark WF, Schauer SV, Bloomquist CG. J Dent Res; 1978 Feb 20; 57(2):373-9. PubMed ID: 308071 [Abstract] [Full Text] [Related] Page: [Next] [New Search]