These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


161 related items for PubMed ID: 30038631

  • 41.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 42. Two lily SEPALLATA-like genes cause different effects on floral formation and floral transition in Arabidopsis.
    Tzeng TY, Hsiao CC, Chi PJ, Yang CH.
    Plant Physiol; 2003 Nov; 133(3):1091-101. PubMed ID: 14526112
    [Abstract] [Full Text] [Related]

  • 43. Integrated metabolome and transcriptome analysis of Magnolia champaca identifies biosynthetic pathways for floral volatile organic compounds.
    Dhandapani S, Jin J, Sridhar V, Sarojam R, Chua NH, Jang IC.
    BMC Genomics; 2017 Jun 14; 18(1):463. PubMed ID: 28615048
    [Abstract] [Full Text] [Related]

  • 44. The Snapdragon LATE ELONGATED HYPOCOTYL Plays A Dual Role in Activating Floral Growth and Scent Emission.
    Terry MI, Pérez-Sanz F, Navarro PJ, Weiss J, Egea-Cortines M.
    Cells; 2019 Aug 17; 8(8):. PubMed ID: 31426490
    [Abstract] [Full Text] [Related]

  • 45. Integrated multi-omics investigation revealed the importance of phenylpropanoid metabolism in the defense response of Lilium regale Wilson to fusarium wilt.
    Deng J, Che X, Gu Y, Qu Y, Liu D.
    Hortic Res; 2024 Jul 17; 11(7):uhae140. PubMed ID: 38988612
    [Abstract] [Full Text] [Related]

  • 46. CYP76C1 (Cytochrome P450)-Mediated Linalool Metabolism and the Formation of Volatile and Soluble Linalool Oxides in Arabidopsis Flowers: A Strategy for Defense against Floral Antagonists.
    Boachon B, Junker RR, Miesch L, Bassard JE, Höfer R, Caillieaudeaux R, Seidel DE, Lesot A, Heinrich C, Ginglinger JF, Allouche L, Vincent B, Wahyuni DS, Paetz C, Beran F, Miesch M, Schneider B, Leiss K, Werck-Reichhart D.
    Plant Cell; 2015 Oct 17; 27(10):2972-90. PubMed ID: 26475865
    [Abstract] [Full Text] [Related]

  • 47. Ectopic expression of LLAG1, an AGAMOUS homologue from lily (Lilium longiflorum Thunb.) causes floral homeotic modifications in Arabidopsis.
    Benedito VA, Visser PB, van Tuyl JM, Angenent GC, de Vries SC, Krens FA.
    J Exp Bot; 2004 Jun 17; 55(401):1391-9. PubMed ID: 15155783
    [Abstract] [Full Text] [Related]

  • 48. New Insights into the Mechanism of Spatiotemporal Scent Accumulation in Orchid Flowers.
    Zheng BQ, Li XQ, Wang Y.
    Plants (Basel); 2023 Jan 09; 12(2):. PubMed ID: 36679016
    [Abstract] [Full Text] [Related]

  • 49. Diurnal regulation of the floral scent emission by light and circadian rhythm in the Phalaenopsis orchids.
    Chuang YC, Lee MC, Chang YL, Chen WH, Chen HH.
    Bot Stud; 2017 Nov 15; 58(1):50. PubMed ID: 29143225
    [Abstract] [Full Text] [Related]

  • 50. Deciphering the Biotic and Climatic Factors That Influence Floral Scents: A Systematic Review of Floral Volatile Emissions.
    Farré-Armengol G, Fernández-Martínez M, Filella I, Junker RR, Peñuelas J.
    Front Plant Sci; 2020 Nov 15; 11():1154. PubMed ID: 32849712
    [Abstract] [Full Text] [Related]

  • 51. Floral adaptations of two lilies: implications for the evolution and pollination ecology of huge trumpet-shaped flowers.
    Liu CQ, Gao YD, Niu Y, Xiong YZ, Sun H.
    Am J Bot; 2019 May 15; 106(5):622-632. PubMed ID: 31022316
    [Abstract] [Full Text] [Related]

  • 52.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 53. A MADS box gene from lily (Lilium Longiflorum) is sufficient to generate dominant negative mutation by interacting with PISTILLATA (PI) in Arabidopsis thaliana.
    Tzeng TY, Yang CH.
    Plant Cell Physiol; 2001 Oct 15; 42(10):1156-68. PubMed ID: 11673632
    [Abstract] [Full Text] [Related]

  • 54.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 55. Functional identification of AtTPS03 as (E)-beta-ocimene synthase: a monoterpene synthase catalyzing jasmonate- and wound-induced volatile formation in Arabidopsis thaliana.
    Fäldt J, Arimura G, Gershenzon J, Takabayashi J, Bohlmann J.
    Planta; 2003 Mar 15; 216(5):745-51. PubMed ID: 12624761
    [Abstract] [Full Text] [Related]

  • 56. Antennal responses to floral scents in the butterfly Heliconius melpomene.
    Andersson S, Dobson HE.
    J Chem Ecol; 2003 Oct 15; 29(10):2319-30. PubMed ID: 14682514
    [Abstract] [Full Text] [Related]

  • 57. Volatile composition, emission pattern, and localization of floral scent emission in Mirabilis jalapa (Nyctaginaceae).
    Effmert U, Große J, Röse US, Ehrig F, Kägi R, Piechulla B.
    Am J Bot; 2005 Jan 15; 92(1):2-12. PubMed ID: 21652378
    [Abstract] [Full Text] [Related]

  • 58. Ectopic expression of carpel-specific MADS box genes from lily and lisianthus causes similar homeotic conversion of sepal and petal in Arabidopsis.
    Tzeng TY, Chen HY, Yang CH.
    Plant Physiol; 2002 Dec 15; 130(4):1827-36. PubMed ID: 12481066
    [Abstract] [Full Text] [Related]

  • 59. Monoterpene-induced molecular responses in Arabidopsis thaliana.
    Godard KA, White R, Bohlmann J.
    Phytochemistry; 2008 Jun 15; 69(9):1838-49. PubMed ID: 18468649
    [Abstract] [Full Text] [Related]

  • 60. Time-series transcriptome provides insights into the gene regulation network involved in the volatile terpenoid metabolism during the flower development of lavender.
    Li H, Li J, Dong Y, Hao H, Ling Z, Bai H, Wang H, Cui H, Shi L.
    BMC Plant Biol; 2019 Jul 15; 19(1):313. PubMed ID: 31307374
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.