These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
222 related items for PubMed ID: 30040661
1. An Energy-Efficient Wirelessly Powered Millimeter-Scale Neurostimulator Implant Based on Systematic Codesign of an Inductive Loop Antenna and a Custom Rectifier. Lyu H, Wang J, La JH, Chung JM, Babakhani A. IEEE Trans Biomed Circuits Syst; 2018 Oct; 12(5):1131-1143. PubMed ID: 30040661 [Abstract] [Full Text] [Related]
2. Toward a fully integrated neurostimulator with inductive power recovery front-end. Mounaïm F, Sawan M. IEEE Trans Biomed Circuits Syst; 2012 Aug; 6(4):309-18. PubMed ID: 23853175 [Abstract] [Full Text] [Related]
3. A microwave powered injectable neural stimulator. Towe BC, Larson PJ, Gulick DW. Annu Int Conf IEEE Eng Med Biol Soc; 2012 Aug; 2012():5006-9. PubMed ID: 23367052 [Abstract] [Full Text] [Related]
4. A wireless millimetre-scale implantable neural stimulator with ultrasonically powered bidirectional communication. Piech DK, Johnson BC, Shen K, Ghanbari MM, Li KY, Neely RM, Kay JE, Carmena JM, Maharbiz MM, Muller R. Nat Biomed Eng; 2020 Feb; 4(2):207-222. PubMed ID: 32076132 [Abstract] [Full Text] [Related]
5. A high-efficiency low-voltage CMOS rectifier for harvesting energy in implantable devices. Hashemi SS, Sawan M, Savaria Y. IEEE Trans Biomed Circuits Syst; 2012 Aug; 6(4):326-35. PubMed ID: 23853177 [Abstract] [Full Text] [Related]
6. A mm-Sized Free-Floating Wirelessly Powered Implantable Optical Stimulation Device. Jia Y, Mirbozorgi SA, Lee B, Khan W, Madi F, Inan OT, Weber A, Li W, Ghovanloo M. IEEE Trans Biomed Circuits Syst; 2019 Aug; 13(4):608-618. PubMed ID: 31135371 [Abstract] [Full Text] [Related]
7. A Fully Integrated RF-Powered Energy-Replenishing Current-Controlled Stimulator. Ha S, Kim C, Park J, Cauwenberghs G, Mercier PP. IEEE Trans Biomed Circuits Syst; 2019 Feb; 13(1):191-202. PubMed ID: 30452378 [Abstract] [Full Text] [Related]
8. A 430-MHz Wirelessly Powered Implantable Pulse Generator With Intensity/Rate Control and Sub-1 μA Quiescent Current Consumption. Lyu H, Gad P, Zhong H, Edgerton VR, Babakhani A. IEEE Trans Biomed Circuits Syst; 2019 Feb; 13(1):180-190. PubMed ID: 30418917 [Abstract] [Full Text] [Related]
11. 13.56 MHz Triple Mode Rectifier Circuit With Extended Coupling Range for Wirelessly Powered Implantable Medical Devices. Engur Y, Yigit HA, Kulah H. IEEE Trans Biomed Circuits Syst; 2021 Feb; 15(1):68-79. PubMed ID: 33360999 [Abstract] [Full Text] [Related]
12. An energy-efficient, adiabatic electrode stimulator with inductive energy recycling and feedback current regulation. Arfin SK, Sarpeshkar R. IEEE Trans Biomed Circuits Syst; 2012 Feb; 6(1):1-14. PubMed ID: 23852740 [Abstract] [Full Text] [Related]
13. Wirelessly Powered and Bi-Directional Data Communication System With Adaptive Conversion Chain for Multisite Biomedical Implants Over Single Inductive Link. Karimi MJ, Jin M, Zhou Y, Dehollain C, Schmid A. IEEE Trans Biomed Circuits Syst; 2024 Jun; 18(3):636-647. PubMed ID: 38285577 [Abstract] [Full Text] [Related]
14. A low-power 13.56 MHz RF front-end circuit for implantable biomedical devices. Lee SY, Hong JH, Hsieh CH, Liang MC, Kung JY. IEEE Trans Biomed Circuits Syst; 2013 Jun; 7(3):256-65. PubMed ID: 23853325 [Abstract] [Full Text] [Related]
15. Reconfigurable Resonant Regulating Rectifier With Primary Equalization for Extended Coupling- and Loading-Range in Bio-Implant Wireless Power Transfer. Li X, Meng X, Tsui CY, Ki WH. IEEE Trans Biomed Circuits Syst; 2015 Dec; 9(6):875-84. PubMed ID: 26742141 [Abstract] [Full Text] [Related]
16. A Low-Voltage CMOS Rectifier with On-Chip Matching Network and a Magnetic Field Focused Antenna for Wirelessly Powered Medical Implants. Wang Z, Mirabbasi S. IEEE Trans Biomed Circuits Syst; 2019 Mar 12. PubMed ID: 30872240 [Abstract] [Full Text] [Related]
17. An Implantable Peripheral Nerve Recording and Stimulation System for Experiments on Freely Moving Animal Subjects. Lee B, Koripalli MK, Jia Y, Acosta J, Sendi MSE, Choi Y, Ghovanloo M. Sci Rep; 2018 Apr 17; 8(1):6115. PubMed ID: 29666407 [Abstract] [Full Text] [Related]
19. A feed-forward controlled AC-DC boost converter for biomedical implants. Jiang H, Lan D, Lin D, Zhang J, Liou S, Shahnasser H, Shen M, Harrison M, Roy S. Annu Int Conf IEEE Eng Med Biol Soc; 2012 Apr 17; 2012():1675-8. PubMed ID: 23366230 [Abstract] [Full Text] [Related]
20. In situ measurement of tissue impedance using an inductive coupling interface circuit. Chiu HW, Chuang JM, Lu CC, Lin WT, Lin CW, Lin ML. IEEE Trans Biomed Circuits Syst; 2013 Jun 17; 7(3):225-35. PubMed ID: 23853322 [Abstract] [Full Text] [Related] Page: [Next] [New Search]