These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


253 related items for PubMed ID: 30045623

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Strongly Lewis Acidic Metal-Organic Frameworks for Continuous Flow Catalysis.
    Ji P, Feng X, Oliveres P, Li Z, Murakami A, Wang C, Lin W.
    J Am Chem Soc; 2019 Sep 18; 141(37):14878-14888. PubMed ID: 31483665
    [Abstract] [Full Text] [Related]

  • 3. Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis.
    Wang C, Xie Z, deKrafft KE, Lin W.
    J Am Chem Soc; 2011 Aug 31; 133(34):13445-54. PubMed ID: 21780787
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Tuning the Catalytic Properties of UiO-66 Metal-Organic Frameworks: From Lewis to Defect-Induced Brønsted Acidity.
    Cirujano FG, Llabrés I Xamena FX.
    J Phys Chem Lett; 2020 Jun 18; 11(12):4879-4890. PubMed ID: 32496804
    [Abstract] [Full Text] [Related]

  • 6. Zr-Based Metal-Organic Frameworks with Intrinsic Peroxidase-Like Activity for Ultradeep Oxidative Desulfurization: Mechanism of H2O2 Decomposition.
    Zheng HQ, Zeng YN, Chen J, Lin RG, Zhuang WE, Cao R, Lin ZJ.
    Inorg Chem; 2019 May 20; 58(10):6983-6992. PubMed ID: 31041865
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Intermediate Binding Control Using Metal-Organic Frameworks Enhances Electrochemical CO2 Reduction.
    Nam DH, Shekhah O, Lee G, Mallick A, Jiang H, Li F, Chen B, Wicks J, Eddaoudi M, Sargent EH.
    J Am Chem Soc; 2020 Dec 23; 142(51):21513-21521. PubMed ID: 33319985
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Metal-Organic Frameworks as Platform for Lewis-Acid-Catalyzed Organic Transformations.
    Yadav A, Kanoo P.
    Chem Asian J; 2019 Oct 15; 14(20):3531-3551. PubMed ID: 31509343
    [Abstract] [Full Text] [Related]

  • 14. Porous and robust lanthanide metal-organoboron frameworks as water tolerant Lewis acid catalysts.
    Liu Y, Mo K, Cui Y.
    Inorg Chem; 2013 Sep 16; 52(18):10286-91. PubMed ID: 24032463
    [Abstract] [Full Text] [Related]

  • 15. BTEX removal from aqueous solution with hydrophobic Zr metal organic frameworks.
    Navarro Amador R, Cirre L, Carboni M, Meyer D.
    J Environ Manage; 2018 May 15; 214():17-22. PubMed ID: 29518592
    [Abstract] [Full Text] [Related]

  • 16. Metal-Organic Framework (MOF) Defects under Control: Insights into the Missing Linker Sites and Their Implication in the Reactivity of Zirconium-Based Frameworks.
    Gutov OV, González Hevia M, Escudero-Adán EC, Shafir A.
    Inorg Chem; 2015 Sep 08; 54(17):8396-400. PubMed ID: 26291237
    [Abstract] [Full Text] [Related]

  • 17. Mixed Functionalization of Organic Ligands in UiO-66: A Tool to Design Metal-Organic Frameworks for Tailored Microextraction.
    González-Rodríguez G, Taima-Mancera I, Lago AB, Ayala JH, Pasán J, Pino V.
    Molecules; 2019 Oct 10; 24(20):. PubMed ID: 31658737
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Self-Generation of Surface Roughness by Low-Surface-Energy Alkyl Chains for Highly Stable Superhydrophobic/Superoleophilic MOFs with Multiple Functionalities.
    Zhu NX, Wei ZW, Chen CX, Wang D, Cao CC, Qiu QF, Jiang JJ, Wang HP, Su CY.
    Angew Chem Int Ed Engl; 2019 Nov 18; 58(47):17033-17040. PubMed ID: 31507037
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.