These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


253 related items for PubMed ID: 30045623

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Cooperative Multifunctional Catalysts for Nitrone Synthesis: Platinum Nanoclusters in Amine-Functionalized Metal-Organic Frameworks.
    Li X, Zhang B, Tang L, Goh TW, Qi S, Volkov A, Pei Y, Qi Z, Tsung CK, Stanley L, Huang W.
    Angew Chem Int Ed Engl; 2017 Dec 18; 56(51):16371-16375. PubMed ID: 29065244
    [Abstract] [Full Text] [Related]

  • 27. Reversible Low-Temperature Metal Node Distortion during Atomic Layer Deposition of Al2O3 and TiO2 on UiO-66-NH2 Metal-Organic Framework Crystal Surfaces.
    Lemaire PC, Lee DT, Zhao J, Parsons GN.
    ACS Appl Mater Interfaces; 2017 Jul 05; 9(26):22042-22054. PubMed ID: 28598598
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Post-Synthetic Modification of Metal-Organic Frameworks Bearing Phenazine Radical Cations for aza-Diels-Alder Reactions.
    Jiang WL, Huang B, Wu MX, Zhu YK, Zhao XL, Shi X, Yang HB.
    Chem Asian J; 2021 Dec 01; 16(23):3985-3992. PubMed ID: 34652071
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Accessing postsynthetic modification in a series of metal-organic frameworks and the influence of framework topology on reactivity.
    Wang Z, Tanabe KK, Cohen SM.
    Inorg Chem; 2009 Jan 05; 48(1):296-306. PubMed ID: 19053339
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. A Bifunctional MOF Catalyst Containing Metal-Phosphine and Lewis Acidic Active Sites.
    Prasad RRR, Dawson DM, Cox PA, Ashbrook SE, Wright PA, Clarke ML.
    Chemistry; 2018 Oct 12; 24(57):15309-15318. PubMed ID: 29979815
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. A New Approach to Non-Coordinating Anions: Lewis Acid Enhancement of Porphyrin Metal Centers in a Zwitterionic Metal-Organic Framework.
    Johnson JA, Petersen BM, Kormos A, Echeverría E, Chen YS, Zhang J.
    J Am Chem Soc; 2016 Aug 17; 138(32):10293-8. PubMed ID: 27435751
    [Abstract] [Full Text] [Related]

  • 39. Stabilizing defects in metal-organic frameworks: pendant Lewis basic sites as capping agents in UiO-66-type MOFs toward highly stable and defective porous materials.
    Fast CD, Woods J, Lentchner J, Makal TA.
    Dalton Trans; 2019 Oct 07; 48(39):14696-14704. PubMed ID: 31538640
    [Abstract] [Full Text] [Related]

  • 40. Fluorescence maxima of 10-methylacridone-metal ion salt complexes: a convenient and quantitative measure of lewis acidity of metal ion salts.
    Fukuzumi S, Ohkubo K.
    J Am Chem Soc; 2002 Sep 04; 124(35):10270-1. PubMed ID: 12197716
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 13.