These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
618 related items for PubMed ID: 30047848
21. Measurement and capture of fine and ultrafine particles from a pilot-scale pulverized coal combustor with an electrostatic precipitator. Li Y, Suriyawong A, Daukoru M, Zhuang Y, Biswas P. J Air Waste Manag Assoc; 2009 May; 59(5):553-9. PubMed ID: 19583155 [Abstract] [Full Text] [Related]
23. Improving the removal of fine particles by chemical agglomeration during the limestone-gypsum wet flue gas desulfurization process. Zhou L, Liu Y, Luo L, Yuan Z, Yang L, Wu H. J Environ Sci (China); 2019 Jun; 80():35-44. PubMed ID: 30952350 [Abstract] [Full Text] [Related]
26. Migration and distribution characteristics of typical organic pollutants in condensable particulate matter of coal-fired flue gas and by-products of wet flue gas desulfurization system. Xu Z, Wu Y, Liu S, Tang M, Lu S. Environ Sci Pollut Res Int; 2024 Apr; 31(17):26170-26181. PubMed ID: 38498134 [Abstract] [Full Text] [Related]
27. Removal characteristics of sulfuric acid aerosols from coal-fired power plants. Pan D, Yang L, Wu H, Huang R. J Air Waste Manag Assoc; 2017 Mar; 67(3):352-357. PubMed ID: 27336801 [Abstract] [Full Text] [Related]
28. PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995. Watson JG, Chow JC, Houck JE. Chemosphere; 2001 Jun; 43(8):1141-51. PubMed ID: 11368231 [Abstract] [Full Text] [Related]
29. The evolution of particles in the plume from a large coal-fired boiler with flue gas desulfurization. Imhoff RE, Tanner RL, Valente RJ, Luria M. J Air Waste Manag Assoc; 2000 Jul; 50(7):1207-14. PubMed ID: 10939213 [Abstract] [Full Text] [Related]
30. Potential flue gas impurities in carbon dioxide streams separated from coal-fired power plants. Lee JY, Keener TC, Yang YJ. J Air Waste Manag Assoc; 2009 Jun; 59(6):725-32. PubMed ID: 19603740 [Abstract] [Full Text] [Related]
31. Carbon dioxide emission tallies for 210 U.S. coal-fired power plants: a comparison of two accounting methods. Quick JC. J Air Waste Manag Assoc; 2014 Jan; 64(1):73-9. PubMed ID: 24620404 [Abstract] [Full Text] [Related]
33. As, Hg, and Se flue gas sampling in a coal-fired power plant and their fate during coal combustion. Otero-Rey JR, López-Vilariño JM, Moreda-Piñeiro J, Alonso-Rodríguez E, Muniategui-Lorenzo S, López-Mahía P, Prada-Rodríguez D. Environ Sci Technol; 2003 Nov 15; 37(22):5262-7. PubMed ID: 14655716 [Abstract] [Full Text] [Related]
36. The oxycoal process with cryogenic oxygen supply. Kather A, Scheffknecht G. Naturwissenschaften; 2009 Sep 15; 96(9):993-1010. PubMed ID: 19495717 [Abstract] [Full Text] [Related]
37. Control strategies of atmospheric mercury emissions from coal-fired power plants in China. Tian H, Wang Y, Cheng K, Qu Y, Hao J, Xue Z, Chai F. J Air Waste Manag Assoc; 2012 May 15; 62(5):576-86. PubMed ID: 22696807 [Abstract] [Full Text] [Related]
38. Aged particles derived from emissions of coal-fired power plants: the TERESA field results. Kang CM, Gupta T, Ruiz PA, Wolfson JM, Ferguson ST, Lawrence JE, Rohr AC, Godleski J, Koutrakis P. Inhal Toxicol; 2011 Aug 15; 23 Suppl 2(0 2):11-30. PubMed ID: 20462390 [Abstract] [Full Text] [Related]