These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Macrophage phenotype switch by sequential action of immunomodulatory cytokines from hydrogel layers on titania nanotubes. Chen J, Li M, Yang C, Yin X, Duan K, Wang J, Feng B. Colloids Surf B Biointerfaces; 2018 Mar 01; 163():336-345. PubMed ID: 29331905 [Abstract] [Full Text] [Related]
3. Controllable release of interleukin-4 in double-layer sol-gel coatings on TiO2 nanotubes for modulating macrophage polarization. Li M, Gao L, Chen J, Zhang Y, Wang J, Lu X, Duan K, Weng J, Feng B. Biomed Mater; 2018 Apr 18; 13(4):045008. PubMed ID: 29056612 [Abstract] [Full Text] [Related]
4. Dual-inflammatory cytokines on TiO2 nanotube-coated surfaces used for regulating macrophage polarization in bone implants. Gao L, Li M, Yin L, Zhao C, Chen J, Zhou J, Duan K, Feng B. J Biomed Mater Res A; 2018 Jul 18; 106(7):1878-1886. PubMed ID: 29524297 [Abstract] [Full Text] [Related]
5. Alginate/chitosan multilayer films coated on IL-4-loaded TiO2 nanotubes for modulation of macrophage phenotype. Yin X, Li Y, Yang C, Weng J, Wang J, Zhou J, Feng B. Int J Biol Macromol; 2019 Jul 01; 132():495-505. PubMed ID: 30936010 [Abstract] [Full Text] [Related]
6. Alginate/chitosan multilayer films coated on IL-4-loaded TiO2 nanotubes for modulation of macrophage phenotype. Yin X, Li Y, Yang C, Weng J, Wang J, Zhou J, Feng B. Int J Biol Macromol; 2019 Jul 15; 133():503-513. PubMed ID: 30980873 [Abstract] [Full Text] [Related]
7. Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds. Spiller KL, Nassiri S, Witherel CE, Anfang RR, Ng J, Nakazawa KR, Yu T, Vunjak-Novakovic G. Biomaterials; 2015 Jan 15; 37():194-207. PubMed ID: 25453950 [Abstract] [Full Text] [Related]
8. Titanium surface characteristics, including topography and wettability, alter macrophage activation. Hotchkiss KM, Reddy GB, Hyzy SL, Schwartz Z, Boyan BD, Olivares-Navarrete R. Acta Biomater; 2016 Feb 15; 31():425-434. PubMed ID: 26675126 [Abstract] [Full Text] [Related]
9. The Effects of Titanium Surfaces Modified with an Antimicrobial Peptide GL13K by Silanization on Polarization, Anti-Inflammatory, and Proinflammatory Properties of Macrophages. Chen X, Zhou L, Wu D, Huang W, Lin Y, Zhou B, Chen J. Biomed Res Int; 2020 Feb 15; 2020():2327034. PubMed ID: 32775410 [Abstract] [Full Text] [Related]
10. The Cu-containing TiO2 coatings with modulatory effects on macrophage polarization and bactericidal capacity prepared by micro-arc oxidation on titanium substrates. Huang Q, Li X, Elkhooly TA, Liu X, Zhang R, Wu H, Feng Q, Liu Y. Colloids Surf B Biointerfaces; 2018 Oct 01; 170():242-250. PubMed ID: 29933233 [Abstract] [Full Text] [Related]
11. Bioactivation of Encapsulation Membranes Reduces Fibrosis and Enhances Cell Survival. Tan RP, Hallahan N, Kosobrodova E, Michael PL, Wei F, Santos M, Lam YT, Chan AHP, Xiao Y, Bilek MMM, Thorn P, Wise SG. ACS Appl Mater Interfaces; 2020 Dec 23; 12(51):56908-56923. PubMed ID: 33314916 [Abstract] [Full Text] [Related]
12. Reduced inflammatory response by incorporating magnesium into porous TiO2 coating on titanium substrate. Li X, Huang Q, Liu L, Zhu W, Elkhooly TA, Liu Y, Feng Q, Li Q, Zhou S, Liu Y, Wu H. Colloids Surf B Biointerfaces; 2018 Nov 01; 171():276-284. PubMed ID: 30041151 [Abstract] [Full Text] [Related]
13. Influence of patterned titanium coatings on polarization of macrophage and osteogenic differentiation of bone marrow stem cells. Zhang Z, Xie Y, Pan H, Huang L, Zheng X. J Biomater Appl; 2018 Feb 01; 32(7):977-986. PubMed ID: 29237352 [Abstract] [Full Text] [Related]
14. Controlled release of cytokines using silk-biomaterials for macrophage polarization. Reeves AR, Spiller KL, Freytes DO, Vunjak-Novakovic G, Kaplan DL. Biomaterials; 2015 Dec 01; 73():272-83. PubMed ID: 26421484 [Abstract] [Full Text] [Related]
15. Graphene oxide coated Titanium Surfaces with Osteoimmunomodulatory Role to Enhance Osteogenesis. Su J, Du Z, Xiao L, Wei F, Yang Y, Li M, Qiu Y, Liu J, Chen J, Xiao Y. Mater Sci Eng C Mater Biol Appl; 2020 Aug 01; 113():110983. PubMed ID: 32487397 [Abstract] [Full Text] [Related]
16. [Adipose-derived stem cells promote the polarization from M1 macrophages to M2 macrophages]. Yin X, Pang C, Bai L, Zhang Y, Geng L. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi; 2016 Mar 01; 32(3):332-8. PubMed ID: 26927552 [Abstract] [Full Text] [Related]
17. Activating macrophages for enhanced osteogenic and bactericidal performance by Cu ion release from micro/nano-topographical coating on a titanium substrate. Huang Q, Ouyang Z, Tan Y, Wu H, Liu Y. Acta Biomater; 2019 Dec 01; 100():415-426. PubMed ID: 31553923 [Abstract] [Full Text] [Related]
18. Sr-doped nanowire modification of Ca-Si-based coatings for improved osteogenic activities and reduced inflammatory reactions. Li K, Hu D, Xie Y, Huang L, Zheng X. Nanotechnology; 2018 Feb 23; 29(8):084001. PubMed ID: 29256438 [Abstract] [Full Text] [Related]
19. Collagen sponge scaffolds loaded with Trichostatin A pretreated BMSCs-derived exosomes regulate macrophage polarization to promote skin wound healing. Wang T, Xue Y, Zhang W, Zheng Z, Peng X, Zhou Y. Int J Biol Macromol; 2024 Jun 23; 269(Pt 2):131948. PubMed ID: 38688338 [Abstract] [Full Text] [Related]
20. A vessel subtype beneficial for osteogenesis enhanced by strontium-doped sodium titanate nanorods by modulating macrophage polarization. Guo S, Yu D, Xiao X, Liu W, Wu Z, Shi L, Zhao Q, Yang D, Lu Y, Wei X, Tang Z, Wang N, Li X, Han Y, Guo Z. J Mater Chem B; 2020 Jul 28; 8(28):6048-6058. PubMed ID: 32627795 [Abstract] [Full Text] [Related] Page: [Next] [New Search]