These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


224 related items for PubMed ID: 30048140

  • 1. Band Tail Engineering in Kesterite Cu2ZnSn(S,Se)4 Thin-Film Solar Cells with 11.8% Efficiency.
    Gang MG, Shin SW, Suryawanshi MP, Ghorpade UV, Song Z, Jang JS, Yun JH, Cheong H, Yan Y, Kim JH.
    J Phys Chem Lett; 2018 Aug 16; 9(16):4555-4561. PubMed ID: 30048140
    [Abstract] [Full Text] [Related]

  • 2. A Facile Process for Partial Ag Substitution in Kesterite Cu2ZnSn(S,Se)4 Solar Cells Enabling a Device Efficiency of over 12.
    Gang MG, Karade VC, Suryawanshi MP, Yoo H, He M, Hao X, Lee IJ, Lee BH, Shin SW, Kim JH.
    ACS Appl Mater Interfaces; 2021 Jan 27; 13(3):3959-3968. PubMed ID: 33463150
    [Abstract] [Full Text] [Related]

  • 3. Substitution of Ag for Cu in Cu2ZnSn(S,Se)4: Toward Wide Band Gap Absorbers with Low Antisite Defects for Thin Film Solar Cells.
    Wu Y, Sui Y, He W, Zeng F, Wang Z, Wang F, Yao B, Yang L.
    Nanomaterials (Basel); 2020 Jan 03; 10(1):. PubMed ID: 31947756
    [Abstract] [Full Text] [Related]

  • 4. Kesterite Cu2ZnSn(S,Se)4 Solar Cells with beyond 8% Efficiency by a Sol-Gel and Selenization Process.
    Liu F, Zeng F, Song N, Jiang L, Han Z, Su Z, Yan C, Wen X, Hao X, Liu Y.
    ACS Appl Mater Interfaces; 2015 Jul 08; 7(26):14376-83. PubMed ID: 26080031
    [Abstract] [Full Text] [Related]

  • 5. Two-Step Annealing CZTSSe/CdS Heterojunction to Improve Interface Properties of Kesterite Solar Cells.
    Duan B, Lou L, Meng F, Zhou J, Wang J, Shi J, Wu H, Luo Y, Li D, Meng Q.
    ACS Appl Mater Interfaces; 2021 Nov 24; 13(46):55243-55253. PubMed ID: 34751555
    [Abstract] [Full Text] [Related]

  • 6. Doping of Sb into Cu2ZnSn(S,Se)4 absorber layer via Se&Sb2Se3 co-selenization strategy for enhancing open-circuit voltage of kesterite solar cells.
    Zhao B, Deng Y, Cao L, Zhu J, Zhou Z.
    Front Chem; 2022 Nov 24; 10():974761. PubMed ID: 36017168
    [Abstract] [Full Text] [Related]

  • 7. Improving the Device Performance of CZTSSe Thin-Film Solar Cells via Indium Doping.
    Korade SD, Gour KS, Karade VC, Jang JS, Rehan M, Patil SS, Bhat TS, Patil AP, Yun JH, Park J, Kim JH, Patil PS.
    ACS Appl Mater Interfaces; 2023 Dec 04. PubMed ID: 38047907
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Cation Substitution in Earth-Abundant Kesterite Photovoltaic Materials.
    Li J, Wang D, Li X, Zeng Y, Zhang Y.
    Adv Sci (Weinh); 2018 Apr 04; 5(4):1700744. PubMed ID: 29721421
    [Abstract] [Full Text] [Related]

  • 12. Analysis of the Voltage Losses in CZTSSe Solar Cells of Varying Sn Content.
    Azzouzi M, Cabas-Vidani A, Haass SG, Röhr JA, Romanyuk YE, Tiwari AN, Nelson J.
    J Phys Chem Lett; 2019 Jun 06; 10(11):2829-2835. PubMed ID: 31070031
    [Abstract] [Full Text] [Related]

  • 13. Significantly Improving the Crystal Growth of a Cu2ZnSn(S,Se)4 Absorber Layer by Air-Annealing a Cu2ZnSnS4 Precursor Thin Film.
    Shi X, Wang Y, Yu H, Wang G, Huang L, Pan D.
    ACS Appl Mater Interfaces; 2020 Sep 16; 12(37):41590-41595. PubMed ID: 32814424
    [Abstract] [Full Text] [Related]

  • 14. Is It Possible To Develop Complex S-Se Graded Band Gap Profiles in Kesterite-Based Solar Cells?
    Andrade-Arvizu J, Izquierdo-Roca V, Becerril-Romero I, Vidal-Fuentes P, Fonoll-Rubio R, Sánchez Y, Placidi M, Calvo-Barrio L, Vigil-Galán O, Saucedo E.
    ACS Appl Mater Interfaces; 2019 Sep 11; 11(36):32945-32956. PubMed ID: 31426633
    [Abstract] [Full Text] [Related]

  • 15. Tuning the Band Gap of Cu₂ZnSn(S,Se)₄ Thin Films via Lithium Alloying.
    Yang Y, Kang X, Huang L, Pan D.
    ACS Appl Mater Interfaces; 2016 Mar 02; 8(8):5308-13. PubMed ID: 26837657
    [Abstract] [Full Text] [Related]

  • 16. Enhanced Carrier Collection in Cd/In-Based Dual Buffers in Kesterite Thin-Film Solar Cells from Nanoparticle Inks.
    Campbell S, Zoppi G, Bowen L, Maiello P, Barrioz V, Beattie NS, Qu Y.
    ACS Appl Energy Mater; 2023 Nov 13; 6(21):10883-10896. PubMed ID: 38020741
    [Abstract] [Full Text] [Related]

  • 17. Insight into the Role of Rb Doping for Highly Efficient Kesterite Cu2ZnSn(S,Se)4 Solar Cells.
    Miao C, Sui Y, Cui Y, Wang Z, Yang L, Wang F, Liu X, Yao B.
    Molecules; 2024 Aug 02; 29(15):. PubMed ID: 39125076
    [Abstract] [Full Text] [Related]

  • 18. Facile Approach for Metallic Precursor Engineering for Efficient Kesterite Thin-Film Solar Cells.
    Park SW, He M, Jang JS, Kamble GU, Suryawanshi UP, Baek MC, Suryawanshi MP, Gang MG, Park Y, Choi HJ, Hao X, Shin SW, Kim JH.
    ACS Appl Mater Interfaces; 2024 Apr 03; 16(13):16328-16339. PubMed ID: 38516946
    [Abstract] [Full Text] [Related]

  • 19. Kesterite Solar Cells: Insights into Current Strategies and Challenges.
    He M, Yan C, Li J, Suryawanshi MP, Kim J, Green MA, Hao X.
    Adv Sci (Weinh); 2021 May 03; 8(9):2004313. PubMed ID: 33977066
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.