These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
402 related items for PubMed ID: 30052528
1. Circumventing silver oxidation induced performance degradation of silver surface-enhanced Raman scattering substrates. Wang Y, Kang Y, Wang WY, Ding Q, Zhou J, Yang S. Nanotechnology; 2018 Oct 12; 29(41):414001. PubMed ID: 30052528 [Abstract] [Full Text] [Related]
2. Zinc oxide/silver nanoarrays as reusable SERS substrates with controllable 'hot-spots' for highly reproducible molecular sensing. Kandjani AE, Mohammadtaheri M, Thakkar A, Bhargava SK, Bansal V. J Colloid Interface Sci; 2014 Dec 15; 436():251-7. PubMed ID: 25278363 [Abstract] [Full Text] [Related]
3. Morphology-Controlled Fabrication of Large-Scale Dendritic Silver Nanostructures for Catalysis and SERS Applications. Cheng ZQ, Li ZW, Xu JH, Yao R, Li ZL, Liang S, Cheng GL, Zhou YH, Luo X, Zhong J. Nanoscale Res Lett; 2019 Mar 12; 14(1):89. PubMed ID: 30868364 [Abstract] [Full Text] [Related]
4. Highly reproducible surface-enhanced Raman scattering-active Au nanostructures prepared by simple electrodeposition: origin of surface-enhanced Raman scattering activity and applications as electrochemical substrates. Choi S, Ahn M, Kim J. Anal Chim Acta; 2013 May 24; 779():1-7. PubMed ID: 23663665 [Abstract] [Full Text] [Related]
5. Electrochemically prepared surface-enhanced Raman scattering-active silver substrates with improved stabilities. Yang KH, Liu YC, Yu CC, Chen BC. Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan 24; 78(1):383-8. PubMed ID: 21145781 [Abstract] [Full Text] [Related]
6. Graphene-Ag Hybrids on Laser-Textured Si Surface for SERS Detection. Zhang C, Lin K, Huang Y, Zhang J. Sensors (Basel); 2017 Jun 22; 17(7):. PubMed ID: 28640180 [Abstract] [Full Text] [Related]
7. Silver overlayer-modified surface-enhanced Raman scattering-active gold substrates for potential applications in trace detection of biochemical species. Ou KL, Hsu TC, Liu YC, Yang KH, Tsai HY. Anal Chim Acta; 2014 Jan 02; 806():188-96. PubMed ID: 24331055 [Abstract] [Full Text] [Related]
8. Simple strategy to improve surface-enhanced Raman scattering based on electrochemically prepared roughened silver substrates. Yang KH, Liu YC, Yu CC. Langmuir; 2010 Jul 06; 26(13):11512-7. PubMed ID: 20524629 [Abstract] [Full Text] [Related]
9. Facile One-Pot Synthesis of Nanodot-Decorated Gold-Silver Alloy Nanoboxes for Single-Particle Surface-Enhanced Raman Scattering Activity. Li J, Zhang G, Wang J, Maksymov IS, Greentree AD, Hu J, Shen A, Wang Y, Trau M. ACS Appl Mater Interfaces; 2018 Sep 26; 10(38):32526-32535. PubMed ID: 30168708 [Abstract] [Full Text] [Related]
10. Surface-enhanced Raman scattering-active silver nanostructures with two domains. Chang CC, Yang KH, Liu YC, Yu CC. Anal Chim Acta; 2012 Jan 04; 709():91-7. PubMed ID: 22122936 [Abstract] [Full Text] [Related]
11. Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing. Fan W, Lee YH, Pedireddy S, Zhang Q, Liu T, Ling XY. Nanoscale; 2014 May 07; 6(9):4843-51. PubMed ID: 24664184 [Abstract] [Full Text] [Related]
12. Improved surface-enhanced Raman scattering on electrochemically roughened silver substrates prepared in bielectrolyte solutions. Liu YC, Wang CC, Tsai JF. Anal Chim Acta; 2007 Feb 19; 584(2):433-8. PubMed ID: 17386634 [Abstract] [Full Text] [Related]
13. Nanoporous silver nanorods as surface-enhanced Raman scattering substrates. Chen Q, Zhao L, Liu H, Ding Q, Jia C, Liao S, Cheng N, Yue M, Yang S. Biosens Bioelectron; 2022 Apr 15; 202():114004. PubMed ID: 35078140 [Abstract] [Full Text] [Related]
14. Using a photochemical method and chitosan to prepare surface-enhanced Raman scattering-active silver nanoparticles. Yang KH, Chang CM. Anal Chim Acta; 2012 Jun 04; 729():1-6. PubMed ID: 22595427 [Abstract] [Full Text] [Related]
15. Cubic Silver Nanoparticles Fixed on TiO2 Nanotubes as Simple and Efficient Substrates for Surface Enhanced Raman Scattering. Ambroziak R, Hołdyński M, Płociński T, Pisarek M, Kudelski A. Materials (Basel); 2019 Oct 16; 12(20):. PubMed ID: 31623068 [Abstract] [Full Text] [Related]
17. Trends in Application of SERS Substrates beyond Ag and Au, and Their Role in Bioanalysis. Sultangaziyev A, Ilyas A, Dyussupova A, Bukasov R. Biosensors (Basel); 2022 Nov 03; 12(11):. PubMed ID: 36354477 [Abstract] [Full Text] [Related]
18. Shape control of Ag nanostructures for practical SERS substrates. Jeon TY, Park SG, Lee SY, Jeon HC, Yang SM. ACS Appl Mater Interfaces; 2013 Jan 23; 5(2):243-8. PubMed ID: 23281631 [Abstract] [Full Text] [Related]
19. Effect of oxidation on surface-enhanced Raman scattering activity of silver nanoparticles: a quantitative correlation. Han Y, Lupitskyy R, Chou TM, Stafford CM, Du H, Sukhishvili S. Anal Chem; 2011 Aug 01; 83(15):5873-80. PubMed ID: 21644591 [Abstract] [Full Text] [Related]
20. A durable surface-enhanced Raman scattering substrate: ultrathin carbon layer encapsulated Ag nanoparticle arrays on indium-tin-oxide glass. Bian J, Li Q, Huang C, Guo Y, Zaw M, Zhang RQ. Phys Chem Chem Phys; 2015 Jun 14; 17(22):14849-55. PubMed ID: 25980466 [Abstract] [Full Text] [Related] Page: [Next] [New Search]