These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
90 related items for PubMed ID: 30055475
1. Improving bioconversion of eugenol to coniferyl alcohol by in situ eliminating harmful H2O2. Lv Y, Cheng X, Wu D, Du G, Zhou J, Chen J. Bioresour Technol; 2018 Nov; 267():578-583. PubMed ID: 30055475 [Abstract] [Full Text] [Related]
2. Harnessing eugenol as a substrate for production of aromatic compounds with recombinant strains of Amycolatopsis sp. HR167. Overhage J, Steinbüchel A, Priefert H. J Biotechnol; 2006 Sep 18; 125(3):369-76. PubMed ID: 16677732 [Abstract] [Full Text] [Related]
3. H(2)O(2) generation during the auto-oxidation of coniferyl alcohol drives the oxidase activity of a highly conserved class III peroxidase involved in lignin biosynthesis. Pomar F, Caballero N, Pedreño M, Ros Barceló A. FEBS Lett; 2002 Oct 09; 529(2-3):198-202. PubMed ID: 12372600 [Abstract] [Full Text] [Related]
4. Highly efficient biotransformation of eugenol to ferulic acid and further conversion to vanillin in recombinant strains of Escherichia coli. Overhage J, Steinbüchel A, Priefert H. Appl Environ Microbiol; 2003 Nov 09; 69(11):6569-76. PubMed ID: 14602615 [Abstract] [Full Text] [Related]
5. Potential of Rhodococcus strains for biotechnological vanillin production from ferulic acid and eugenol. Plaggenborg R, Overhage J, Loos A, Archer JA, Lessard P, Sinskey AJ, Steinbüchel A, Priefert H. Appl Microbiol Biotechnol; 2006 Oct 09; 72(4):745-55. PubMed ID: 16421716 [Abstract] [Full Text] [Related]
6. Substrate specificity of flavin-dependent vanillyl-alcohol oxidase from Penicillium simplicissimum. Evidence for the production of 4-hydroxycinnamyl alcohols from 4-allylphenols. Fraaije MW, Veeger C, van Berkel WJ. Eur J Biochem; 1995 Nov 15; 234(1):271-7. PubMed ID: 8529652 [Abstract] [Full Text] [Related]
7. Discovery of a eugenol oxidase from Rhodococcus sp. strain RHA1. Jin J, Mazon H, van den Heuvel RH, Janssen DB, Fraaije MW. FEBS J; 2007 May 15; 274(9):2311-21. PubMed ID: 17419730 [Abstract] [Full Text] [Related]
8. Microbial synthesis of coniferyl alcohol by the fungus Byssochlamys fulva V107. Furukawa H, Wieser M, Morita H, Nagasawa T. Biosci Biotechnol Biochem; 1999 Jun 15; 63(6):1141-2. PubMed ID: 10427706 [Abstract] [Full Text] [Related]
9. Carboxylic acid reductase-dependent biosynthesis of eugenol and related allylphenols. Hanko EKR, Valdehuesa KNG, Verhagen KJA, Chromy J, Stoney RA, Chua J, Yan C, Roubos JA, Schmitz J, Breitling R. Microb Cell Fact; 2023 Nov 18; 22(1):238. PubMed ID: 37980525 [Abstract] [Full Text] [Related]
10. Biocatalytic Properties and Structural Analysis of Eugenol Oxidase from Rhodococcus jostii RHA1: A Versatile Oxidative Biocatalyst. Nguyen QT, de Gonzalo G, Binda C, Rioz-Martínez A, Mattevi A, Fraaije MW. Chembiochem; 2016 Jul 15; 17(14):1359-66. PubMed ID: 27123962 [Abstract] [Full Text] [Related]
11. Genome-wide identification, characterization, expression and enzyme activity analysis of coniferyl alcohol acetyltransferase genes involved in eugenol biosynthesis in Prunus mume. Zhang T, Huo T, Ding A, Hao R, Wang J, Cheng T, Bao F, Zhang Q. PLoS One; 2019 Jul 15; 14(10):e0223974. PubMed ID: 31618262 [Abstract] [Full Text] [Related]
12. A rapid and simple ultra high performance liquid chromatography method for the simultaneous determination of methoxyphenol derivatives involved in the eugenol catabolic pathway. Singh A, Ghosh Sachan S, Mukhopadhyay K, Kumar M, Sachan A. J Sep Sci; 2020 Mar 15; 43(5):877-885. PubMed ID: 31837095 [Abstract] [Full Text] [Related]
13. Spectroscopic analyses of the biofuels-critical phytochemical coniferyl alcohol and its enzyme-catalyzed oxidation products. Achyuthan KE, Adams PD, Simmons BA, Singh AK. Molecules; 2009 Nov 23; 14(11):4758-78. PubMed ID: 19935474 [Abstract] [Full Text] [Related]
14. Production of natural value-added compounds: an insight into the eugenol biotransformation pathway. Mishra S, Sachan A, Sachan SG. J Ind Microbiol Biotechnol; 2013 Jun 23; 40(6):545-50. PubMed ID: 23532316 [Abstract] [Full Text] [Related]
15. Polymerization of coniferyl alcohol by Mn3+ -mediated (enzymatic) oxidation: Effects of H2 O2 concentration, aqueous organic solvents, and pH. Taboada-Puig R, Lú-Chau TA, Moreira MT, Feijoo G, Lema JM, Fagerstedt K, Ohra-Aho T, Liitiä T, Heikkinen H, Ropponen J, Tamminen T. Biotechnol Prog; 2018 Jan 23; 34(1):81-90. PubMed ID: 28960884 [Abstract] [Full Text] [Related]
16. Effects of a biologically relevant antioxidant on the dehydrogenative polymerization of coniferyl alcohol. Holmgren A, Henriksson G, Zhang L. Biomacromolecules; 2008 Dec 23; 9(12):3378-82. PubMed ID: 18991457 [Abstract] [Full Text] [Related]
17. Lignin chemistry: biosynthetic study and structural characterisation of coniferyl alcohol oligomers formed in vitro in a micellar environment. Reale S, Attanasio F, Spreti N, De Angelis F. Chemistry; 2010 May 25; 16(20):6077-87. PubMed ID: 20397161 [Abstract] [Full Text] [Related]
18. Bioconversion of isoeugenol into vanillin by crude enzyme extracted from soybean. Li YH, Sun ZH, Zhao LQ, Xu Y. Appl Biochem Biotechnol; 2005 Apr 25; 125(1):1-10. PubMed ID: 15834158 [Abstract] [Full Text] [Related]
20. Three-steps in one-pot: whole-cell biocatalytic synthesis of enantiopure (+)- and (-)-pinoresinol via kinetic resolution. Ricklefs E, Girhard M, Urlacher VB. Microb Cell Fact; 2016 May 09; 15():78. PubMed ID: 27160378 [Abstract] [Full Text] [Related] Page: [Next] [New Search]