These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


259 related items for PubMed ID: 30059209

  • 1. Self-Cleaning Porous Surfaces for Dry Condensation.
    Liu K, Huang Z, Hemmatifar A, Oyarzun DI, Zhou J, Santiago JG.
    ACS Appl Mater Interfaces; 2018 Aug 08; 10(31):26759-26764. PubMed ID: 30059209
    [Abstract] [Full Text] [Related]

  • 2. Hierarchical Superhydrophobic Surfaces with Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation.
    Wen R, Xu S, Zhao D, Lee YC, Ma X, Yang R.
    ACS Appl Mater Interfaces; 2017 Dec 27; 9(51):44911-44921. PubMed ID: 29214806
    [Abstract] [Full Text] [Related]

  • 3. Electric-field-enhanced condensation on superhydrophobic nanostructured surfaces.
    Miljkovic N, Preston DJ, Enright R, Wang EN.
    ACS Nano; 2013 Dec 23; 7(12):11043-54. PubMed ID: 24261667
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces.
    Miljkovic N, Enright R, Nam Y, Lopez K, Dou N, Sack J, Wang EN.
    Nano Lett; 2013 Jan 09; 13(1):179-87. PubMed ID: 23190055
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Electrostatic charging of jumping droplets.
    Miljkovic N, Preston DJ, Enright R, Wang EN.
    Nat Commun; 2013 Jan 09; 4():2517. PubMed ID: 24071721
    [Abstract] [Full Text] [Related]

  • 14. How Superhydrophobic Grooves Drive Single-Droplet Jumping.
    Chu F, Yan X, Miljkovic N.
    Langmuir; 2022 Apr 12; 38(14):4452-4460. PubMed ID: 35348343
    [Abstract] [Full Text] [Related]

  • 15. Coalescence-Induced Jumping Droplets on Nanostructured Biphilic Surfaces with Contact Electrification Effects.
    Zhu Y, Tso CY, Ho TC, Leung MKH, Yao S.
    ACS Appl Mater Interfaces; 2021 Mar 10; 13(9):11470-11479. PubMed ID: 33630565
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. How coalescing droplets jump.
    Enright R, Miljkovic N, Sprittles J, Nolan K, Mitchell R, Wang EN.
    ACS Nano; 2014 Oct 28; 8(10):10352-62. PubMed ID: 25171210
    [Abstract] [Full Text] [Related]

  • 18. Competing Effects between Condensation and Self-Removal of Water Droplets Determine Antifrosting Performance of Superhydrophobic Surfaces.
    Zhao G, Zou G, Wang W, Geng R, Yan X, He Z, Liu L, Zhou X, Lv J, Wang J.
    ACS Appl Mater Interfaces; 2020 Feb 12; 12(6):7805-7814. PubMed ID: 31972085
    [Abstract] [Full Text] [Related]

  • 19. A Comprehensive Model of Electric-Field-Enhanced Jumping-Droplet Condensation on Superhydrophobic Surfaces.
    Birbarah P, Li Z, Pauls A, Miljkovic N.
    Langmuir; 2015 Jul 21; 31(28):7885-96. PubMed ID: 26110977
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.