These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
139 related items for PubMed ID: 30060989
1. Enhancement of sonochemical oxidation reactions using air sparging in a 36 kHz sonoreactor. Choi J, Khim J, Neppolian B, Son Y. Ultrason Sonochem; 2019 Mar; 51():412-418. PubMed ID: 30060989 [Abstract] [Full Text] [Related]
2. Effect of liquid recirculation flow on sonochemical oxidation activity in a 28 kHz sonoreactor. Lee D, Na I, Son Y. Chemosphere; 2022 Jan; 286(Pt 2):131780. PubMed ID: 34358887 [Abstract] [Full Text] [Related]
3. Effects of gas sparging and mechanical mixing on sonochemical oxidation activity. Choi J, Lee H, Son Y. Ultrason Sonochem; 2021 Jan; 70():105334. PubMed ID: 32932226 [Abstract] [Full Text] [Related]
4. Effects of gas saturation and sparging on sonochemical oxidation activity in open and closed systems, Part I: H2O2 generation. Son Y, Seo J. Ultrason Sonochem; 2022 Nov; 90():106214. PubMed ID: 36327919 [Abstract] [Full Text] [Related]
5. Geometric and operational optimization of 20-kHz probe-type sonoreactor for enhancing sonochemical activity. Son Y, No Y, Kim J. Ultrason Sonochem; 2020 Jul; 65():105065. PubMed ID: 32199254 [Abstract] [Full Text] [Related]
6. The effects of liquid height/volume, initial concentration of reactant and acoustic power on sonochemical oxidation. Lim M, Ashokkumar M, Son Y. Ultrason Sonochem; 2014 Nov; 21(6):1988-93. PubMed ID: 24690295 [Abstract] [Full Text] [Related]
7. Effects of gas saturation and sparging on sonochemical oxidation activity under different liquid level and volume conditions in 300-kHz sonoreactors: Zeroth- and first-order reaction comparison using KI dosimetry and BPA degradation. Lee S, Son Y. Ultrason Sonochem; 2023 Aug; 98():106521. PubMed ID: 37473616 [Abstract] [Full Text] [Related]
8. Investigation of sonochemical activities at a frequency of 334 kHz: the effect of geometric parameters of sonoreactor. Kim E, Cui M, Jang M, Park B, Son Y, Khim J. Ultrason Sonochem; 2014 Jul; 21(4):1504-11. PubMed ID: 24508490 [Abstract] [Full Text] [Related]
10. Effects of gas saturation and sparging on sonochemical oxidation activity in open and closed systems, part II: NO2-/NO3- generation and a brief critical review. Son Y, Choi J. Ultrason Sonochem; 2023 Jan; 92():106250. PubMed ID: 36459904 [Abstract] [Full Text] [Related]
11. Effect of dissolved gases on sonochemical oxidation in a 20 kHz probe system: Continuous monitoring of dissolved oxygen concentration and sonochemical oxidation activity. Choi J, Son Y. Ultrason Sonochem; 2023 Jul; 97():106452. PubMed ID: 37245263 [Abstract] [Full Text] [Related]
12. Sonochemical efficiency dependence on liquid height and frequency in an improved sonochemical reactor. de La Rochebrochard S, Suptil J, Blais JF, Naffrechoux E. Ultrason Sonochem; 2012 Mar; 19(2):280-5. PubMed ID: 21873099 [Abstract] [Full Text] [Related]
13. A phenomenological investigation into the opposing effects of fluid flow on sonochemical activity at different frequency and power settings. 2. Fluid circulation at high frequencies. Bussemaker MJ, Zhang D. Ultrason Sonochem; 2014 Mar; 21(2):485-92. PubMed ID: 24134828 [Abstract] [Full Text] [Related]
14. Sonochemical oxidation activity in 20-kHz probe-type sonicator systems: The effects of probe positions and vessel sizes. Na I, Son Y. Ultrason Sonochem; 2024 Aug; 108():106959. PubMed ID: 38896894 [Abstract] [Full Text] [Related]
16. Sonochemical reactor characterization in the presence of cylindrical and conical reflectors. Ferkous H, Hamdaoui O, Pétrier C. Ultrason Sonochem; 2023 Oct; 99():106556. PubMed ID: 37586183 [Abstract] [Full Text] [Related]
17. Investigation of acoustic cavitation energy in a large-scale sonoreactor. Son Y, Lim M, Khim J. Ultrason Sonochem; 2009 Apr; 16(4):552-6. PubMed ID: 19144557 [Abstract] [Full Text] [Related]
18. The effects of acoustic flow and mechanical flow on the sonochemical efficiency in a rectangular sonochemical reactor. Kojima Y, Asakura Y, Sugiyama G, Koda S. Ultrason Sonochem; 2010 Aug; 17(6):978-84. PubMed ID: 20044295 [Abstract] [Full Text] [Related]
19. Contributions of reactor geometry and ultrasound frequency on the efficiency of sonochemical reactor. Kewalramani JA, Bezerra de Souza B, Marsh RW, Meegoda JN. Ultrason Sonochem; 2023 Aug; 98():106529. PubMed ID: 37487437 [Abstract] [Full Text] [Related]
20. Correlation between acoustic cavitation noise and yield enhancement of sonochemical reaction by particle addition. Tuziuti T, Yasui K, Sivakumar M, Iida Y, Miyoshi N. J Phys Chem A; 2005 Jun 02; 109(21):4869-72. PubMed ID: 16833832 [Abstract] [Full Text] [Related] Page: [Next] [New Search]