These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


202 related items for PubMed ID: 30063138

  • 1. Combined Enrichment/Enzymatic Approach To Study Tightly Clustered Multisite Phosphorylation on Ser-Rich Domains.
    Kanshin E, Pascariu M, Tyers M, D'Amours D, Thibault P.
    J Proteome Res; 2018 Sep 07; 17(9):3050-3060. PubMed ID: 30063138
    [Abstract] [Full Text] [Related]

  • 2. Role of Cdc42-Cla4 interaction in the pheromone response of Saccharomyces cerevisiae.
    Heinrich M, Köhler T, Mösch HU.
    Eukaryot Cell; 2007 Feb 07; 6(2):317-27. PubMed ID: 17189484
    [Abstract] [Full Text] [Related]

  • 3. Phosphorylation of the pheromone-responsive Gbeta protein of Saccharomyces cerevisiae does not affect its mating-specific signaling function.
    Li E, Cismowski MJ, Stone DE.
    Mol Gen Genet; 1998 Jun 07; 258(6):608-18. PubMed ID: 9671029
    [Abstract] [Full Text] [Related]

  • 4. Phosphorylation of the MAPKKK regulator Ste50p in Saccharomyces cerevisiae: a casein kinase I phosphorylation site is required for proper mating function.
    Wu C, Arcand M, Jansen G, Zhong M, Iouk T, Thomas DY, Meloche S, Whiteway M.
    Eukaryot Cell; 2003 Oct 07; 2(5):949-61. PubMed ID: 14555477
    [Abstract] [Full Text] [Related]

  • 5. Global analysis of phosphoproteome regulation by the Ser/Thr phosphatase Ppt1 in Saccharomyces cerevisiae.
    Schreiber TB, Mäusbacher N, Soroka J, Wandinger SK, Buchner J, Daub H.
    J Proteome Res; 2012 Apr 06; 11(4):2397-408. PubMed ID: 22369663
    [Abstract] [Full Text] [Related]

  • 6. Multistep phosphorylation systems: tunable components of biological signaling circuits.
    Valk E, Venta R, Ord M, Faustova I, Kõivomägi M, Loog M.
    Mol Biol Cell; 2014 Nov 05; 25(22):3456-60. PubMed ID: 25368420
    [Abstract] [Full Text] [Related]

  • 7. Combining Deep Sequencing, Proteomics, Phosphoproteomics, and Functional Screens To Discover Novel Regulators of Sphingolipid Homeostasis.
    Lebesgue N, Megyeri M, Cristobal A, Scholten A, Chuartzman SG, Voichek Y, Scheltema RA, Mohammed S, Futerman AH, Schuldiner M, Heck AJ, Lemeer S.
    J Proteome Res; 2017 Feb 03; 16(2):571-582. PubMed ID: 28152593
    [Abstract] [Full Text] [Related]

  • 8. Direct interaction of Ste11 and Mkk1/2 through Nst1 integrates high-osmolarity glycerol and pheromone pathways to the cell wall integrity MAPK pathway.
    Leng G, Song K.
    FEBS Lett; 2016 Jan 03; 590(1):148-60. PubMed ID: 26787465
    [Abstract] [Full Text] [Related]

  • 9. Sample Collection Method Bias Effects in Quantitative Phosphoproteomics.
    Kanshin E, Tyers M, Thibault P.
    J Proteome Res; 2015 Jul 02; 14(7):2998-3004. PubMed ID: 26040406
    [Abstract] [Full Text] [Related]

  • 10. Investigation of Proteomic and Phosphoproteomic Responses to Signaling Network Perturbations Reveals Functional Pathway Organizations in Yeast.
    Li J, Paulo JA, Nusinow DP, Huttlin EL, Gygi SP.
    Cell Rep; 2019 Nov 12; 29(7):2092-2104.e4. PubMed ID: 31722220
    [Abstract] [Full Text] [Related]

  • 11. A modified KESTREL search reveals a basophilic substrate consensus for the Saccharomyces cerevisiae Npr1 protein kinase.
    Gander S, Martin D, Hauri S, Moes S, Poletto G, Pagano MA, Marin O, Meggio F, Jenoe P.
    J Proteome Res; 2009 Nov 12; 8(11):5305-16. PubMed ID: 19780626
    [Abstract] [Full Text] [Related]

  • 12. A dominant truncation allele identifies a gene, STE20, that encodes a putative protein kinase necessary for mating in Saccharomyces cerevisiae.
    Ramer SW, Davis RW.
    Proc Natl Acad Sci U S A; 1993 Jan 15; 90(2):452-6. PubMed ID: 8421676
    [Abstract] [Full Text] [Related]

  • 13. Interaction with the SH3 domain protein Bem1 regulates signaling by the Saccharomyces cerevisiae p21-activated kinase Ste20.
    Winters MJ, Pryciak PM.
    Mol Cell Biol; 2005 Mar 15; 25(6):2177-90. PubMed ID: 15743816
    [Abstract] [Full Text] [Related]

  • 14. Machine Learning of Global Phosphoproteomic Profiles Enables Discrimination of Direct versus Indirect Kinase Substrates.
    Kanshin E, Giguère S, Jing C, Tyers M, Thibault P.
    Mol Cell Proteomics; 2017 May 15; 16(5):786-798. PubMed ID: 28265048
    [Abstract] [Full Text] [Related]

  • 15. Pheromone-induced phosphorylation of a G protein beta subunit in S. cerevisiae is associated with an adaptive response to mating pheromone.
    Cole GM, Reed SI.
    Cell; 1991 Feb 22; 64(4):703-16. PubMed ID: 1900039
    [Abstract] [Full Text] [Related]

  • 16. Protein kinase A phosphorylates the Nem1-Spo7 protein phosphatase complex that regulates the phosphorylation state of the phosphatidate phosphatase Pah1 in yeast.
    Su WM, Han GS, Dey P, Carman GM.
    J Biol Chem; 2018 Oct 12; 293(41):15801-15814. PubMed ID: 30201607
    [Abstract] [Full Text] [Related]

  • 17. Differential Phosphoproteomic Analysis of Recombinant Chinese Hamster Ovary Cells Following Temperature Shift.
    Henry M, Power M, Kaushik P, Coleman O, Clynes M, Meleady P.
    J Proteome Res; 2017 Jul 07; 16(7):2339-2358. PubMed ID: 28509555
    [Abstract] [Full Text] [Related]

  • 18. Discovery of Arginine Methylation, Phosphorylation, and Their Co-occurrence in Condensate-Associated Proteins in Saccharomyces cerevisiae.
    Hamey JJ, Nguyen A, Wilkins MR.
    J Proteome Res; 2021 May 07; 20(5):2420-2434. PubMed ID: 33856219
    [Abstract] [Full Text] [Related]

  • 19. Quantitative proteome analyses identify PrfA-responsive proteins and phosphoproteins in Listeria monocytogenes.
    Misra SK, Moussan Désirée Aké F, Wu Z, Milohanic E, Cao TN, Cossart P, Deutscher J, Monnet V, Archambaud C, Henry C.
    J Proteome Res; 2014 Dec 05; 13(12):6046-57. PubMed ID: 25383790
    [Abstract] [Full Text] [Related]

  • 20. Tuning bulk electrostatics to regulate protein function.
    Serber Z, Ferrell JE.
    Cell; 2007 Feb 09; 128(3):441-4. PubMed ID: 17289565
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.