These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Transcriptomic changes in the PacC transcription factor deletion mutant of the plant pathogenic fungus Botrytis cinerea under acidic and neutral conditions. Rascle C, Malbert B, Goncalves I, Choquer M, Bruel C, Poussereau N. BMC Genom Data; 2024 Oct 09; 25(1):87. PubMed ID: 39385086 [Abstract] [Full Text] [Related]
5. The MAPK kinase BcMkk1 suppresses oxalic acid biosynthesis via impeding phosphorylation of BcRim15 by BcSch9 in Botrytis cinerea. Yin Y, Wu S, Chui C, Ma T, Jiang H, Hahn M, Ma Z. PLoS Pathog; 2018 Sep 09; 14(9):e1007285. PubMed ID: 30212570 [Abstract] [Full Text] [Related]
6. The H3K4 demethylase Jar1 orchestrates ROS production and expression of pathogenesis-related genes to facilitate Botrytis cinerea virulence. Hou J, Feng HQ, Chang HW, Liu Y, Li GH, Yang S, Sun CH, Zhang MZ, Yuan Y, Sun J, Zhu-Salzman K, Zhang H, Qin QM. New Phytol; 2020 Jan 09; 225(2):930-947. PubMed ID: 31529514 [Abstract] [Full Text] [Related]
7. The GATA transcription factor BcWCL2 regulates citric acid secretion to maintain redox homeostasis and full virulence in Botrytis cinerea. Ren W, Qian C, Ren D, Cai Y, Deng Z, Zhang N, Wang C, Wang Y, Zhu P, Xu L. mBio; 2024 Jul 17; 15(7):e0013324. PubMed ID: 38814088 [Abstract] [Full Text] [Related]
8. Proteomic analysis of mycelium and secretome of different Botrytis cinerea wild-type strains. González-Fernández R, Aloria K, Valero-Galván J, Redondo I, Arizmendi JM, Jorrín-Novo JV. J Proteomics; 2014 Jan 31; 97():195-221. PubMed ID: 23811051 [Abstract] [Full Text] [Related]
9. Loss of bcbrn1 and bcpks13 in Botrytis cinerea Not Only Blocks Melanization But Also Increases Vegetative Growth and Virulence. Zhang C, He Y, Zhu P, Chen L, Wang Y, Ni B, Xu L. Mol Plant Microbe Interact; 2015 Oct 31; 28(10):1091-101. PubMed ID: 26035129 [Abstract] [Full Text] [Related]
10. Unraveling the Function of the Response Regulator BcSkn7 in the Stress Signaling Network of Botrytis cinerea. Viefhues A, Schlathoelter I, Simon A, Viaud M, Tudzynski P. Eukaryot Cell; 2015 Jul 31; 14(7):636-51. PubMed ID: 25934690 [Abstract] [Full Text] [Related]
13. Exploring pathogenic mechanisms of Botrytis cinerea secretome under different ambient pH based on comparative proteomic analysis. Li B, Wang W, Zong Y, Qin G, Tian S. J Proteome Res; 2012 Aug 03; 11(8):4249-60. PubMed ID: 22746291 [Abstract] [Full Text] [Related]
16. Characterization of the cell wall of the ubiquitous plant pathogen Botrytis cinerea. Cantu D, Greve LC, Labavitch JM, Powell AL. Mycol Res; 2009 Dec 03; 113(Pt 12):1396-403. PubMed ID: 19781643 [Abstract] [Full Text] [Related]
17. Characterization of a new, nonpathogenic mutant of Botrytis cinerea with impaired plant colonization capacity. Kunz C, Vandelle E, Rolland S, Poinssot B, Bruel C, Cimerman A, Zotti C, Moreau E, Vedel R, Pugin A, Boccara M. New Phytol; 2006 Dec 03; 170(3):537-50. PubMed ID: 16626475 [Abstract] [Full Text] [Related]
18. Transcription Factor PdeR Is Involved in Fungal Development, Metabolic Change, and Pathogenesis of Gray Mold Botrytis cinerea. Han JW, Kim DY, Lee YJ, Choi YR, Kim B, Choi GJ, Han SW, Kim H. J Agric Food Chem; 2020 Aug 26; 68(34):9171-9179. PubMed ID: 32786857 [Abstract] [Full Text] [Related]
19. Disruption of the Bcchs3a chitin synthase gene in Botrytis cinerea is responsible for altered adhesion and overstimulation of host plant immunity. Arbelet D, Malfatti P, Simond-Côte E, Fontaine T, Desquilbet L, Expert D, Kunz C, Soulié MC. Mol Plant Microbe Interact; 2010 Oct 26; 23(10):1324-34. PubMed ID: 20672878 [Abstract] [Full Text] [Related]
20. Licensed to kill: the lifestyle of a necrotrophic plant pathogen. van Kan JA. Trends Plant Sci; 2006 May 26; 11(5):247-53. PubMed ID: 16616579 [Abstract] [Full Text] [Related] Page: [Next] [New Search]