These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
512 related items for PubMed ID: 30067831
41. Parallel Metabolomic and Transcriptomic Analysis Reveals Key Factors for Quality Improvement of Tea Plants. Qiu H, Zhu X, Wan H, Xu L, Zhang Q, Hou P, Fan Z, Lyu Y, Ni D, Usadel B, Fernie AR, Wen W. J Agric Food Chem; 2020 May 13; 68(19):5483-5495. PubMed ID: 32302110 [Abstract] [Full Text] [Related]
42. Transcriptome-wide identification of Camellia sinensis WRKY transcription factors in response to temperature stress. Wu ZJ, Li XH, Liu ZW, Li H, Wang YX, Zhuang J. Mol Genet Genomics; 2016 Feb 13; 291(1):255-69. PubMed ID: 26308611 [Abstract] [Full Text] [Related]
43. Functional Characterization of An Allene Oxide Synthase Involved in Biosynthesis of Jasmonic Acid and Its Influence on Metabolite Profiles and Ethylene Formation in Tea (Camellia sinensis) Flowers. Peng Q, Zhou Y, Liao Y, Zeng L, Xu X, Jia Y, Dong F, Li J, Tang J, Yang Z. Int J Mol Sci; 2018 Aug 18; 19(8):. PubMed ID: 30126188 [Abstract] [Full Text] [Related]
44. Metabolomics and Transcriptomics Analyses Reveal Nitrogen Influences on the Accumulation of Flavonoids and Amino Acids in Young Shoots of Tea Plant ( Camellia sinensis L.) Associated with Tea Flavor. Huang H, Yao Q, Xia E, Gao L. J Agric Food Chem; 2018 Sep 19; 66(37):9828-9838. PubMed ID: 30198713 [Abstract] [Full Text] [Related]
45. Insights into the Metabolite Profiles of Two Camellia (Theaceae) Species in Yunnan Province through Metabolomic and Transcriptomic Analysis. Niu M, Li R, Li X, Yang H, Ding J, Zhou X, He Y, Xu Y, Qu Q, Liu Z, Li J. Biomolecules; 2024 Sep 03; 14(9):. PubMed ID: 39334872 [Abstract] [Full Text] [Related]
46. Transcriptomic analysis of the biosynthesis, recycling, and distribution of ascorbic acid during leaf development in tea plant (Camellia sinensis (L.) O. Kuntze). Li H, Huang W, Wang GL, Wang WL, Cui X, Zhuang J. Sci Rep; 2017 Apr 10; 7():46212. PubMed ID: 28393854 [Abstract] [Full Text] [Related]
47. Implementation of CsLIS/NES in linalool biosynthesis involves transcript splicing regulation in Camellia sinensis. Liu GF, Liu JJ, He ZR, Wang FM, Yang H, Yan YF, Gao MJ, Gruber MY, Wan XC, Wei S. Plant Cell Environ; 2018 Jan 10; 41(1):176-186. PubMed ID: 28963730 [Abstract] [Full Text] [Related]
48. Identification of MYB Transcription Factors Regulating Theanine Biosynthesis in Tea Plant Using Omics-Based Gene Coexpression Analysis. Zhang S, Chen Y, He X, Du J, Zhang R, Ma Y, Hu X, Zhang Z, Chen Q, Wan X. J Agric Food Chem; 2020 Jan 22; 68(3):918-926. PubMed ID: 31899636 [Abstract] [Full Text] [Related]
49. Genome-wide identification of microRNAs responsive to Ectropis oblique feeding in tea plant (Camellia sinensis L.). Jeyaraj A, Liu S, Zhang X, Zhang R, Shangguan M, Wei C. Sci Rep; 2017 Oct 19; 7(1):13634. PubMed ID: 29051614 [Abstract] [Full Text] [Related]
51. Studies on the Biochemical Formation Pathway of the Amino Acid l-Theanine in Tea (Camellia sinensis) and Other Plants. Cheng S, Fu X, Wang X, Liao Y, Zeng L, Dong F, Yang Z. J Agric Food Chem; 2017 Aug 23; 65(33):7210-7216. PubMed ID: 28796499 [Abstract] [Full Text] [Related]
52. Integrated RNA-Seq and sRNA-Seq Analysis Identifies Chilling and Freezing Responsive Key Molecular Players and Pathways in Tea Plant (Camellia sinensis). Zheng C, Zhao L, Wang Y, Shen J, Zhang Y, Jia S, Li Y, Ding Z. PLoS One; 2015 Aug 23; 10(4):e0125031. PubMed ID: 25901577 [Abstract] [Full Text] [Related]
53. Complementary iTRAQ Proteomic and Transcriptomic Analyses of Leaves in Tea Plant ( Camellia sinensis L.) with Different Maturity and Regulatory Network of Flavonoid Biosynthesis. Wu LY, Fang ZT, Lin JK, Sun Y, Du ZZ, Guo YL, Liu JH, Liang YR, Ye JH. J Proteome Res; 2019 Jan 04; 18(1):252-264. PubMed ID: 30427694 [Abstract] [Full Text] [Related]
55. An RNA-Seq transcriptome analysis revealing novel insights into aluminum tolerance and accumulation in tea plant. Li Y, Huang J, Song X, Zhang Z, Jiang Y, Zhu Y, Zhao H, Ni D. Planta; 2017 Jul 04; 246(1):91-103. PubMed ID: 28365842 [Abstract] [Full Text] [Related]
56. Comparative transcriptomic analysis of resistant and susceptible tea cultivars in response to Empoasca onukii (Matsuda) damage. Jin S, Ren Q, Lian L, Cai X, Bian L, Luo Z, Li Z, Ye N, Wei R, He W, Liu W, Chen Z. Planta; 2020 Jun 29; 252(1):10. PubMed ID: 32601995 [Abstract] [Full Text] [Related]
57. Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. Shi CY, Yang H, Wei CL, Yu O, Zhang ZZ, Jiang CJ, Sun J, Li YY, Chen Q, Xia T, Wan XC. BMC Genomics; 2011 Feb 28; 12():131. PubMed ID: 21356090 [Abstract] [Full Text] [Related]
60. A Comparative Proteomic Analysis of the Buds and the Young Expanding Leaves of the Tea Plant (Camellia sinensis L.). Li Q, Li J, Liu S, Huang J, Lin H, Wang K, Cheng X, Liu Z. Int J Mol Sci; 2015 Jun 18; 16(6):14007-38. PubMed ID: 26096006 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]