These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


633 related items for PubMed ID: 30071096

  • 1. Aptamer-functionalized AuNPs for the high-sensitivity colorimetric detection of melamine in milk samples.
    Hu X, Chang K, Wang S, Sun X, Hu J, Jiang M.
    PLoS One; 2018; 13(8):e0201626. PubMed ID: 30071096
    [Abstract] [Full Text] [Related]

  • 2. Highly Sensitive Aptamer-Based Colorimetric Detection of Melamine in Raw Milk with Cysteamine-Stabilized Gold Nanoparticles.
    Zheng H, Li Y, Xu J, Bie J, Liu X, Guo J, Luo Y, Shen F, Sun C, Yu Y.
    J Nanosci Nanotechnol; 2017 Feb; 17(2):853-61. PubMed ID: 29668219
    [Abstract] [Full Text] [Related]

  • 3. Sensitive colorimetric detection of melamine in processed raw milk using asymmetrically PEGylated gold nanoparticles.
    Chen XY, Ha W, Shi YP.
    Talanta; 2019 Mar 01; 194():475-484. PubMed ID: 30609561
    [Abstract] [Full Text] [Related]

  • 4. Colorimetric detection of melamine in milk by citrate-stabilized gold nanoparticles.
    Kumar N, Seth R, Kumar H.
    Anal Biochem; 2014 Jul 01; 456():43-9. PubMed ID: 24727351
    [Abstract] [Full Text] [Related]

  • 5. Colorimetric detection of melamine in milk based on Triton X-100 modified gold nanoparticles and its paper-based application.
    Gao N, Huang P, Wu F.
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Mar 05; 192():174-180. PubMed ID: 29136582
    [Abstract] [Full Text] [Related]

  • 6. Colorimetric detection of melamine in milk by using gold nanoparticles-based LSPR via optical fibers.
    Chang K, Wang S, Zhang H, Guo Q, Hu X, Lin Z, Sun H, Jiang M, Hu J.
    PLoS One; 2017 Mar 05; 12(5):e0177131. PubMed ID: 28475597
    [Abstract] [Full Text] [Related]

  • 7. Dopamine and Melamine Binding to Gold Nanoparticles Dominates Their Aptamer-Based Label-Free Colorimetric Sensing.
    Liu X, He F, Zhang F, Zhang Z, Huang Z, Liu J.
    Anal Chem; 2020 Jul 07; 92(13):9370-9378. PubMed ID: 32515584
    [Abstract] [Full Text] [Related]

  • 8. Colorimetric sensing strategy for mercury(II) and melamine utilizing cysteamine-modified gold nanoparticles.
    Ma Y, Jiang L, Mei Y, Song R, Tian D, Huang H.
    Analyst; 2013 Sep 21; 138(18):5338-43. PubMed ID: 23875182
    [Abstract] [Full Text] [Related]

  • 9. Novel rapid detection of melamine based on the synergistic aggregation of gold nanoparticles.
    Cao W, Shan S, Xing K, Jing X, Peng J, Xiao X, Liu D, Xia J, Lai W.
    Food Chem; 2023 Dec 01; 428():136789. PubMed ID: 37423110
    [Abstract] [Full Text] [Related]

  • 10. Target-induced gold nanoparticles colorimetric sensing coupled with aptamer for rapid and high-sensitivity detecting kanamycin.
    Xu R, Cheng Y, Qi X, Li X, Zhang Z, Chen L, Sun T, Gao Z, Zhu M.
    Anal Chim Acta; 2022 Oct 16; 1230():340377. PubMed ID: 36192060
    [Abstract] [Full Text] [Related]

  • 11. Colorimetric detection of melamine in complex matrices based on cysteamine-modified gold nanoparticles.
    Liang X, Wei H, Cui Z, Deng J, Zhang Z, You X, Zhang XE.
    Analyst; 2011 Jan 07; 136(1):179-83. PubMed ID: 20877886
    [Abstract] [Full Text] [Related]

  • 12. Picomolar melamine enhanced the fluorescence of gold nanoparticles: spectrofluorimetric determination of melamine in milk and infant formulas using functionalized triazole capped gold nanoparticles.
    Vasimalai N, Abraham John S.
    Biosens Bioelectron; 2013 Apr 15; 42():267-72. PubMed ID: 23208097
    [Abstract] [Full Text] [Related]

  • 13. Colorimetric detection of potassium ions using aptamer-functionalized gold nanoparticles.
    Chen Z, Huang Y, Li X, Zhou T, Ma H, Qiang H, Liu Y.
    Anal Chim Acta; 2013 Jul 17; 787():189-92. PubMed ID: 23830438
    [Abstract] [Full Text] [Related]

  • 14. Selective determination of melamine in milk samples using 3-mercapto-1-propanesulfonate-modified gold nanoparticles as colorimetric probe.
    Su H, Fan H, Ai S, Wu N, Fan H, Bian P, Liu J.
    Talanta; 2011 Sep 15; 85(3):1338-43. PubMed ID: 21807192
    [Abstract] [Full Text] [Related]

  • 15. A "turn-on" fluorescent sensor for ultrasensitive detection of melamine based on a new fluorescence probe and AuNPs.
    Lu Q, Zhao J, Xue S, Yin P, Zhang Y, Yao S.
    Analyst; 2015 Feb 21; 140(4):1155-60. PubMed ID: 25512948
    [Abstract] [Full Text] [Related]

  • 16. Label-free direct detection of melamine using functionalized gold nanoparticles-based dual-fluorescence colorimetric nanoswitch sensing platform.
    Xiong J, Sun B, Wang S, Zhang S, Qin L, Jiang H.
    Talanta; 2024 Sep 01; 277():126335. PubMed ID: 38823323
    [Abstract] [Full Text] [Related]

  • 17. Aptamer-based colorimetric biosensing of abrin using catalytic gold nanoparticles.
    Hu J, Ni P, Dai H, Sun Y, Wang Y, Jiang S, Li Z.
    Analyst; 2015 May 21; 140(10):3581-6. PubMed ID: 25854313
    [Abstract] [Full Text] [Related]

  • 18. In-situ detection of cadmium with aptamer functionalized gold nanoparticles based on smartphone-based colorimetric system.
    Gan Y, Liang T, Hu Q, Zhong L, Wang X, Wan H, Wang P.
    Talanta; 2020 Feb 01; 208():120231. PubMed ID: 31816705
    [Abstract] [Full Text] [Related]

  • 19. Colorimetric determination of melamine in milk using unmodified silver nanoparticles.
    Kumar N, Kumar H, Mann B, Seth R.
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Mar 05; 156():89-97. PubMed ID: 26654965
    [Abstract] [Full Text] [Related]

  • 20. Aptamer--nanoparticle-based chemiluminescence for p53 protein.
    Shwetha N, Selvakumar LS, Thakur MS.
    Anal Biochem; 2013 Oct 01; 441(1):73-9. PubMed ID: 23816877
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 32.