These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
783 related items for PubMed ID: 30071670
1. Deep Neural Network Based Predictions of Protein Interactions Using Primary Sequences. Li H, Gong XJ, Yu H, Zhou C. Molecules; 2018 Aug 01; 23(8):. PubMed ID: 30071670 [Abstract] [Full Text] [Related]
2. SDNN-PPI: self-attention with deep neural network effect on protein-protein interaction prediction. Li X, Han P, Wang G, Chen W, Wang S, Song T. BMC Genomics; 2022 Jun 27; 23(1):474. PubMed ID: 35761175 [Abstract] [Full Text] [Related]
3. Graph-based prediction of Protein-protein interactions with attributed signed graph embedding. Yang F, Fan K, Song D, Lin H. BMC Bioinformatics; 2020 Jul 21; 21(1):323. PubMed ID: 32693790 [Abstract] [Full Text] [Related]
4. Completing sparse and disconnected protein-protein network by deep learning. Huang L, Liao L, Wu CH. BMC Bioinformatics; 2018 Mar 22; 19(1):103. PubMed ID: 29566671 [Abstract] [Full Text] [Related]
5. Sequence-based prediction of protein protein interaction using a deep-learning algorithm. Sun T, Zhou B, Lai L, Pei J. BMC Bioinformatics; 2017 May 25; 18(1):277. PubMed ID: 28545462 [Abstract] [Full Text] [Related]
6. AE-LGBM: Sequence-based novel approach to detect interacting protein pairs via ensemble of autoencoder and LightGBM. Sharma A, Singh B. Comput Biol Med; 2020 Oct 25; 125():103964. PubMed ID: 32911276 [Abstract] [Full Text] [Related]
7. Prediction of Protein-Protein Interactions Based on Integrating Deep Learning and Feature Fusion. Tran HN, Nguyen PX, Guo F, Wang J. Int J Mol Sci; 2024 May 27; 25(11):. PubMed ID: 38892007 [Abstract] [Full Text] [Related]
8. Protein-Protein Interactions Prediction Using a Novel Local Conjoint Triad Descriptor of Amino Acid Sequences. Wang J, Zhang L, Jia L, Ren Y, Yu G. Int J Mol Sci; 2017 Nov 08; 18(11):. PubMed ID: 29117139 [Abstract] [Full Text] [Related]
9. Multimodal deep representation learning for protein interaction identification and protein family classification. Zhang D, Kabuka M. BMC Bioinformatics; 2019 Dec 02; 20(Suppl 16):531. PubMed ID: 31787089 [Abstract] [Full Text] [Related]
10. MaTPIP: A deep-learning architecture with eXplainable AI for sequence-driven, feature mixed protein-protein interaction prediction. Ghosh S, Mitra P. Comput Methods Programs Biomed; 2024 Feb 02; 244():107955. PubMed ID: 38064959 [Abstract] [Full Text] [Related]
11. RVMAB: Using the Relevance Vector Machine Model Combined with Average Blocks to Predict the Interactions of Proteins from Protein Sequences. An JY, You ZH, Meng FR, Xu SJ, Wang Y. Int J Mol Sci; 2016 May 18; 17(5):. PubMed ID: 27213337 [Abstract] [Full Text] [Related]
12. Predicting protein-protein interactions using high-quality non-interacting pairs. Zhang L, Yu G, Guo M, Wang J. BMC Bioinformatics; 2018 Dec 31; 19(Suppl 19):525. PubMed ID: 30598096 [Abstract] [Full Text] [Related]
13. Predicting protein-protein interactions from protein sequences by a stacked sparse autoencoder deep neural network. Wang YB, You ZH, Li X, Jiang TH, Chen X, Zhou X, Wang L. Mol Biosyst; 2017 Jun 27; 13(7):1336-1344. PubMed ID: 28604872 [Abstract] [Full Text] [Related]
14. HN-PPISP: a hybrid network based on MLP-Mixer for protein-protein interaction site prediction. Kang Y, Xu Y, Wang X, Pu B, Yang X, Rao Y, Chen J. Brief Bioinform; 2023 Jan 19; 24(1):. PubMed ID: 36403092 [Abstract] [Full Text] [Related]
15. Predicting protein-ligand binding residues with deep convolutional neural networks. Cui Y, Dong Q, Hong D, Wang X. BMC Bioinformatics; 2019 Feb 26; 20(1):93. PubMed ID: 30808287 [Abstract] [Full Text] [Related]
17. DeepACLSTM: deep asymmetric convolutional long short-term memory neural models for protein secondary structure prediction. Guo Y, Li W, Wang B, Liu H, Zhou D. BMC Bioinformatics; 2019 Jun 17; 20(1):341. PubMed ID: 31208331 [Abstract] [Full Text] [Related]
18. DL-PPI: a method on prediction of sequenced protein-protein interaction based on deep learning. Wu J, Liu B, Zhang J, Wang Z, Li J. BMC Bioinformatics; 2023 Dec 14; 24(1):473. PubMed ID: 38097937 [Abstract] [Full Text] [Related]
19. An Investigation of Deep Learning Models for EEG-Based Emotion Recognition. Zhang Y, Chen J, Tan JH, Chen Y, Chen Y, Li D, Yang L, Su J, Huang X, Che W. Front Neurosci; 2020 Dec 14; 14():622759. PubMed ID: 33424547 [Abstract] [Full Text] [Related]
20. Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation. Li X, Peng L, Yao X, Cui S, Hu Y, You C, Chi T. Environ Pollut; 2017 Dec 14; 231(Pt 1):997-1004. PubMed ID: 28898956 [Abstract] [Full Text] [Related] Page: [Next] [New Search]