These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
178 related items for PubMed ID: 30075796
1. Validation of carbon dioxide production (VCO2) as a tool to calculate resting energy expenditure (REE) in mechanically ventilated critically ill patients: a retrospective observational study. Kagan I, Zusman O, Bendavid I, Theilla M, Cohen J, Singer P. Crit Care; 2018 Aug 03; 22(1):186. PubMed ID: 30075796 [Abstract] [Full Text] [Related]
3. Can Vco2-Based Estimates of Resting Energy Expenditure Replace the Need for Indirect Calorimetry in Critically Ill Children? Mouzaki M, Schwartz SM, Mtaweh H, La Rotta G, Mah K, Herridge J, Van Arsdell G, Parshuram CS, Floh AA. JPEN J Parenter Enteral Nutr; 2017 May 03; 41(4):619-624. PubMed ID: 26950946 [Abstract] [Full Text] [Related]
4. External Validation with Accuracy Confounders of VCO2-Derived Predicted Energy Expenditure Compared to Resting Energy Expenditure Measured by Indirect Calorimetry in Mechanically Ventilated Children. Briassoulis P, Ilia S, Briassouli E, Briassoulis G. Nutrients; 2022 Oct 10; 14(19):. PubMed ID: 36235863 [Abstract] [Full Text] [Related]
7. MECCIAS trial: Metabolic consequences of continuous veno-venous hemofiltration on indirect calorimetry. Jonckheer J, Demol J, Lanckmans K, Malbrain MLNG, Spapen H, De Waele E. Clin Nutr; 2020 Dec 10; 39(12):3797-3803. PubMed ID: 32371095 [Abstract] [Full Text] [Related]
8. Assessment of resting energy expenditure in pediatric mitochondrial diseases with indirect calorimetry. Fiuza-Luces C, Santos-Lozano A, García-Silva MT, Martín-Hernández E, Quijada-Fraile P, Marín-Peiró M, Campos P, Arenas J, Lucía A, Martín MA, Morán M. Clin Nutr; 2016 Dec 10; 35(6):1484-1489. PubMed ID: 27105558 [Abstract] [Full Text] [Related]
10. Ventilator-derived carbon dioxide production to assess energy expenditure in critically ill patients: proof of concept. Stapel SN, de Grooth HJ, Alimohamad H, Elbers PW, Girbes AR, Weijs PJ, Oudemans-van Straaten HM. Crit Care; 2015 Oct 22; 19():370. PubMed ID: 26494245 [Abstract] [Full Text] [Related]
11. Comparison of Mindray metabolic system and the GE S/5 metabolic system: Indirect calorimetry in critically ill, mechanically ventilated patients. Fishman G, Kagan I, Robinson E, Singer P. Nutrition; 2022 Oct 22; 99-100():111632. PubMed ID: 35588651 [Abstract] [Full Text] [Related]
12. Measuring energy expenditure in the intensive care unit: a comparison of indirect calorimetry by E-sCOVX and Quark RMR with Deltatrac II in mechanically ventilated critically ill patients. Rehal MS, Fiskaare E, Tjäder I, Norberg Å, Rooyackers O, Wernerman J. Crit Care; 2016 Mar 05; 20():54. PubMed ID: 26951095 [Abstract] [Full Text] [Related]
15. A pocket-sized metabolic analyzer for assessment of resting energy expenditure. Zhao D, Xian X, Terrera M, Krishnan R, Miller D, Bridgeman D, Tao K, Zhang L, Tsow F, Forzani ES, Tao N. Clin Nutr; 2014 Apr 05; 33(2):341-7. PubMed ID: 23827182 [Abstract] [Full Text] [Related]
16. Resting energy expenditure by indirect calorimetry versus the ventilator-VCO2 derived method in critically ill patients: The DREAM-VCO2 prospective comparative study. Koekkoek WAC, Xiaochen G, van Dijk D, van Zanten ARH. Clin Nutr ESPEN; 2020 Oct 05; 39():137-143. PubMed ID: 32859307 [Abstract] [Full Text] [Related]
17. Validation of a 5-minute steady state indirect calorimetry protocol for resting energy expenditure in critically ill patients. Frankenfield DC, Sarson GY, Blosser SA, Cooney RN, Smith JS. J Am Coll Nutr; 1996 Aug 05; 15(4):397-402. PubMed ID: 8829096 [Abstract] [Full Text] [Related]